Biology Reference
In-Depth Information
36. Song X, Gurevich EV, Gurevich VV. Cone arrestin binding to JNK3 and Mdm2: con-
formational
preference
and
localization of
interaction sites.
J Neurochem .
2007;103:1053- 1062.
37. Song X, Coffa S, Fu H, Gurevich VV. How does arrestin assemble MAPKs into a sig-
naling complex? J Biol Chem . 2009;284:685 - 695.
38. Coffa S, Breitman M, Hanson SM, et al. The effect of arrestin conformation on the
recruitment of c-Raf1, MEK1, and ERK1/2 activation. PLoS One . 2011;6:e28723.
39. Jafri F, El-Shewy HM, Lee MH, Kelly M, Luttrell DK, Luttrell LM. Constitutive
ERK1/2 activation by a chimeric neurokinin 1 receptor-beta-arrestin1 fusion protein.
Probing the composition and function of the G protein-coupled receptor “signalsome”
J Biol Chem . 2006;281:19346- 19357.
40. Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF. Activation of Raf
as a result of recruitment to the plasma membrane. Science . 1994;264:1463- 1467.
41. Terrillon S, Bouvier M. Receptor activity-independent recruitment of betaarrestin2
reveals specific signalling modes. EMBO J . 2004;23:3950 -3961.
42. Song X, Raman D, Gurevich EV, Vishnivetskiy SA, Gurevich VV. Visual and both
non-visual arrestins in their “inactive” conformation bind JNK3 and Mdm2 and
relocalize them from the nucleus
to the cytoplasm.
J Biol Chem . 2006;281:
21491- 21499.
43. Seo J, Tsakem EL, Breitman M, Gurevich VV. Identification of arrestin-3-specific res-
idues necessary for JNK3 kinase activation. J Biol Chem . 2011;286:27894 - 27901.
44. Miller WE, McDonald PH, Cai SF, Field ME, Davis RJ, Lefkowitz RJ. Identification
of a motif in the carboxyl terminus of beta-arrestin2 responsible for activation of JNK3.
J Biol Chem . 2001;276:27770- 27777.
45. Shenoy SK, Lefkowitz RJ. Receptor-specific ubiquitination of beta-arrestin directs
assembly and targeting of seven-transmembrane receptor signalosomes. J Biol Chem .
2005;280:15315 - 15324.
46. Lee M-H, El-Shewy HM, Luttrell DK, Luttrell LM. Role of beta-arrestin-mediated
desensitization and signaling in the control of angiotensin AT1a receptor-stimulated
transcription. J Biol Chem . 2008;283:2088- 2097.
47. Lin F-T, Miller WE, Luttrell LM, Lefkowitz RJ. Feedback regulation of beta-arrestin1
function by extracellular signal-regulated kinases. J Biol Chem . 1999;274:15971- 15974.
48. Zimmerman B, Simaan M, Lee M-H, Luttrell LM, Laporte SA. c-Src-mediated phos-
phorylation of AP-2 reveals a general mechanism for receptors internalizing through
the clathrin pathway. Cell Signal . 2009;21:103- 110.
49. Ge L, Ly Y, Hollenberg M, DeFea K. A beta-arrestin-dependent scaffold is associated
with prolonged MAPK activation in pseudopodia during protease-activated receptor-
2-induced chemotaxis. J Biol Chem . 2003;278:34418 - 34426.
50. Holloway AC, Qian H, Pipolo L, et al. Side-chain substitutions within angiotensin II
reveal different requirements for signaling, internalization, and phosphorylation of type
1A angiotensin receptors. Mol Pharmacol . 2002;61:768 - 777.
51. Xiao K, Sun J, Kim J, et al. Global phosphorylation analysis of beta-arrestin-mediated
signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci
USA . 2010;107:15299- 15304.
52. Christensen GL, Kelstrup CD, Lyngsø C, et al. Quantitative phosphoproteomics dis-
section of seven-transmembrane receptor signaling using full and biased agonists. Mol
Cell Proteomics . 2010;9:1540- 1553.
53. Richter W, Day P, Agrawal R, et al. Signaling from beta1- and beta2-adrenergic recep-
tors is defined by differential interactions with PDE4. EMBO J . 2008;27:384- 393.
54. Luan B, Zhang Z, Wu Y, Kang J, Pei G. Beta-arrestin2 functions as a phosphorylation-
regulated suppressor of UV-induced NF-kappaB activation. EMBO J . 2005;24:
4237- 4246.
 
 
Search WWH ::




Custom Search