Biomedical Engineering Reference
In-Depth Information
systems relevant to the study of dental caries,
Caries Res. 11 (Suppl. 1) (1977) 142 e 171.
[46] A. Ito, K. Maekawa, S. Tsutsumi, F. Ikazaki,
T. Tateishi, Solubility product of OH-carbonated
hydroxyapatite, J. Biomed. Mater. Res. 36A
(1997) 522 e 528.
[47] S. Matsuya, S. Takagi, L.C. Chow, Hydrolysis
of tetracalcium phosphate in H 3 PO 4 and
KH 2 PO 4 , J. Mater. Sci. 31 (1996) 3263 e 3269.
[48] T. Okuda, K. Ioku, I. Yonezawa, H. Minagi,
Y. Gonda, G. Kawachi, et al., The slow
resorption with replacement of bone by
a hydrothermally synthesized pure calcium-
deficient
biocomposites, J. Mater. Res. 21 (8) (2006)
2136 e 2145.
[57] H.-J. Cha, C.W. Frank, Annealing study of
poly(ether ether ketone): temperature effect on
molecular conformation and crystallinity,
Korea Polym. J. 7 (3) (1999) 141 e 149.
[58] D.F. Williams, A. McNamara, R.M. Turner,
Potential of polyetheretherketone (PEEK) and
carbon-fibre-reinforced PEEK in medical
applications, J. Mater. Sci. Lett. 6 (1987)
188 e 190.
[59] L.M. Wenz, K. Merrit, S.A. Brown, A. Moet,
A.D. Steffee, In vitro biocompatibility
of polyetheretherketone and polysulfone
composites, J. Biomed. Mater. Res. 24 (1990)
207 e 215.
[60] K.A. Jockisch, S.A. Brown, T.W. Bauer,
K. Merritt, Biological response to chopped-
carbon-fiber-reinforced PEEK,
hydroxyapatite, Biomaterials
29
(2008) 2719 e 2728.
[49] W. Suchanek, H. Sada, M. Yashimi,
M. Kakihana, M. Yoshimura, Biocompatible
whiskers with controlled morphology and
stoichiometry, J. Mater. Res. 10 (3) (1995)
521 e 529.
[50] R.K. Roeder, G.L. Converse, H. Leng, W. Yue,
Kinetic effects on hydroxyapatite whiskers
synthesized by the chelate decomposition
method, J. Am. Ceram. Soc. 89 (7) (2006)
2096 e 2104.
[51] I.S. Neira, Y.V. Kolen'ko, O.I. Lebedev,
G.V. Tendeloo, H.S. Gupta, F. Guiti ยด n, et al.,
An effective morphology control of hydroxy-
apatite crystals via hydrothermal synthesis,
Cryst. Growth Des. 9 (1) (2009) 466 e 474.
[52] A.C. Tas, Molten salt synthesis of calcium
hydroxyapatite whiskers, J. Am. Ceram. Soc.
84 (2) (2001) 295 e 300.
[53] L. Yubao, K. de Groot, J. de Wijn,
C.P.A.T. Klein, S.V.D. Meer, Morphology and
composition of nanograde calcium phosphate
needle-like crystals formed by simple hydro-
thermal treatment, J. Mater. Sci. Mater. Med. 5
(6 e 7) (1994) 326 e 331.
[54] K. Teraoka, A. Ito, K. Onuma, T. Tateishi,
S. Tsutsumi, Hydrothermal growth of
hydroxyapatite single crystals under natural
convection,
J. Biomed.
Mater. Res. 26 (1992) 133 e 146.
[61] J.W. Brantigan, P.C. McAfee,
B.W. Cunningham, H. Wang, C.M. Orbegoso,
Interbody lumbar fusion using a carbon fiber
cage implant versus allograft bone, Spine 19
(13) (1994) 1436 e 1444.
[62] C.-H. Rivard, S. Rhalmi, C. Coillard, In vivo
biocompatibility testing of PEEK polymer
for a spinal implant system: a study in rabbits,
J. Biomed. Mater. Res.
62
(4)
(2002)
488 e 498.
[63] T. Nieminen, I. Kallela, E. Wuolijoki,
H. Kainulainen, I. Hiidenheimo, I. Rantala,
Amorphous and crystalline polyetheretherketone:
mechanical properties and tissue reactions during
a 3-year follow-up, J. Biomed. Mater. Res. 84A
(2008) 377 e 383.
[64] K.B. Sagomonyants, M.L. Jarman-Smith,
J.N. Devine, M.S. Aronow, G.A. Gronowicz,
The in vitro response of human osteoblasts to
polyetheretherketone
(PEEK)
substrates
compared to commercially pure
titanium,
Biomaterials 29 (2008) 1563 e 1572.
[65] D. Togawa, T.W. Bauer, I.H. Leiberman,
H. Sakai, Lumbar intervertebral body fusion
cages: histological evaluation of clinically
failed cages retrieved from humans, J. Bone
Joint Surg. Am. 86 (2004) 70 e 79.
[66] L.L. Hench, Bioceramics:
J. Mater. Res. 14 (6)
(1999)
2655 e 2661.
[55] S.-L. Gao, K. Kim J, Cooling rate influences in
carbon fibre/PEEK composites. Part 1. Crys-
tallinity and interface adhesion, Composites
31A (2000) 517 e 530.
[56] W. Yue, R.K. Roeder, Micromechanical model
for hydroxyapatite whisker reinforced polymer
from concept
to
clinic, J. Am. Ceram. Soc. 74 (7)
(1991)
1487 e 1510.
Search WWH ::




Custom Search