Biomedical Engineering Reference
In-Depth Information
[30] W.J. Brennan, W.J. Feast, H.S. Munro,
S.A. Walker, Investigation of the ageing of
plasma oxidised PEEK, Polymer 32 (8) (2006)
1527 e 1530.
[31] E. Occhiello, M. Morra, G.L. Guerrini,
F. Garbassi, Adhesion properties of plasma
treated carbon/PEEK composites, Composites
23 (3) (1992) 193 e 200.
[32] J. Comyn, L. Mascia, G. Xiao, Plasma-treat-
ment of polyetheretherketone (PEEK) for
adhesive bonding, Int. J. Adhesion Adhesives
16 (1996) 97 e 104.
[33] S.W. Ha, M. Kirch, F. Birchler, K.L. Eckert,
J. Mayer, E. Wintermantel, et al., Surface
activation of polyetheretherketone (PEEK) and
formation of calcium phosphate coatings by
precipitation, J. Mater. Sci. Mater. Med. 8 (11)
(1997) 683 e 690.
[34] D. Briem, S. Strametz, K. Schroder,
N.M. Meenen, W. Lehmann, W. Linhart, et al.,
Response of primary fibroblasts and osteo-
blasts to plasma treated polyetheretherketone
(PEEK) surfaces, J. Mater. Sci. Mater. Med. 16
(7) (2005) 671 e 677.
[35] L.C. Lopez, P. Favia, R. d'Agostino, Plasma
modification
properties, Biomaterials
31
(13)
(2010)
3465 e 3470.
[41] C. Henneuse-Boxus, E. Duliere, J. Marchand-
Brynaert, Surface functionalization of PEEK
films using photochemical routes, Eur. Polym.
J. 37 (1) (2001) 9 e 18.
[42] D. Pohle, T. Rechtenwald, C. Damm,
H. Munstedt, A full factorial analysis of the
laser sintering process of polyetheretherketone
for
bone
substitutes, ESB Abs.
(2005)
2005:LP4.
[43] K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah,
P. Cheang, M.S. Abu Bakar, et al., Scaffold
development using selective laser sintering
of polyetheretherketone e hydroxyapatite bio-
composite blends, Biomaterials 24 (18) (2003)
3115 e 3123.
[44] T.J. Dennes, J. Schwartz, A nanoscale adhe-
sion layer to promote cell attachment on
PEEK, J. Am. Chem. Soc. 131 (10) (2009)
3456 e 3457.
[45] A.H.C. Poulsson, M.L. Jarman-Smith,
R.G. Richards, Stable oxygen plasma surface
modification of PEEK to improve human
primary osteoblast cytocompatibility, Lang-
muir (2011), in press.
[46] J.H. Lee, H.G. Kim, G. Khang, Polymeric
biomaterials, in: J.D. Bronzino (Ed.),
Biomedical Engineering Handbook, CRC
Press, Boca Raton, FL, 1995, pp. 581 e 597.
[47] B.D. Ratner, Surface modification of poly-
mers: chemical, biological and surface
analytical challenges, Biosens. Bioelectron. 10
(9 e 10) (1995) 797 e 804.
[48] D.F. Williams, Definitions in Biomaterials, in:
D.F. Williams (Ed.), Progress in Biomedical
Engineering, fourth ed., Elsevier, New York,
1987.
[49] D.J. Mooney, R.S. Langer, Engineering bioma-
terials for tissue engineering, in: J.D. Bronzino
(Ed.), The Biomedical Engineering Handbook,
CRC Press, 1995, pp. 1609 e 1618, the 10 e 100
micron size scale.
[50] B.D. Ratner, H. Shi, Recognition templates for
biomaterials with engineered bioreactivity,
Curr. Opin. Solid State Mater. Sci. 4 (4) (1999)
395 e 402.
[51] H. Nygren, M. Broberg, C. Eriksson,
H. Sahlin, N. Yahyapour, The respiratory burst
response of surface-adhering leukocytes. A
of
porous
PEEK-WC-PU
membranes,
Desalination
200
(2006)
503 e 504.
[36] F. Garbassi, M. Morra, E. Occhiello, Modifi-
cation techniques and applications, in:
F. Garbassi, M. Morra, E. Occhiello (Eds.),
Polymer Surfaces: from Physics to Technology,
John Wiley and Sons, Chichester, UK, 1994,
pp. 221 e 454.
[37] I. Mathieson, R.H. Bradley, Effects of ultra-
violet/ozone on the surface chemistry of
polymer films, Adv. Eng. Mater. 99 e 100
(1994) 185 e 191.
[38] I. Mathieson, R.H. Bradley, Improved adhesion
to polymer by UV/ozone surface oxidation, Int.
J. Adhesion Adhesives 16 (1996) 29 e 31.
[39] B. Yameen, M. Alvarez, O. Azzaroni,
U. Jonas, W. Knoll, Tailoring of poly(ether
ether ketone) surface properties via surface-
initiated atom transfer radical polymerization,
Langmuir 25 (11) (2009) 6214 e 6220.
[40] C.M. Han, E.J. Lee, H.E. Kim, Y.H. Koh,
K.N. Kim, Y. Ha, et al., The electron beam
deposition of titanium on polyetheretherketone
(PEEK) and the resulting enhanced biological
Search WWH ::




Custom Search