Biomedical Engineering Reference
In-Depth Information
178. Kakade, B., Mehta, R., Durge, A., Kulkarni, S., Pillai, V.: Electric field induced, superhy-
drophobic to superhydrophilic switching in multiwalled carbon nanotube papers. Nano Lett.
8 (9), 2693-2696 (2008)
179. Chen, J.Y., Kutana, A., Collier, C.P., Giapis, K.P.: Electrowetting in carbon nanotubes.
Science 310 (5753), 1480-1483 (2005)
180. Zhu, L.B., Xu, J.W., Xiu, Y.H., Sun, Y.Y., Hess, D.W., Wong, C.P.: Electrowetting of aligned
carbon nanotube films. J. Phys. Chem. B 110 (32), 15945-15950 (2006)
181. Wang, Z.K., Ci, L.J., Chen, L., Nayak, S., Ajayan, P.M., Koratkar, N.: Polarity-dependent
electrochemically controlled transport of water through carbon nanotube membranes. Nano
Lett. 7 (3), 697-702 (2007)
182. Bodre, C., Pauporte, T.: Nanostructured ZnO-Based Surface with Reversible Electrochemi-
cally Adjustable Wettability. Adv. Mater. 21 (6), 697 (2009)
183. Lahann, J., Mitragotri, S., Tran, T.N., Kaido, H., Sundaram, J., Choi, I.S., Hoffer, S., Somorjai,
G.A., Langer, R.: A reversibly switching surface. Science 299 (5605), 371-374 (2003)
184. Xu, L.B., Chen, W., Mulchandani, A., Yan, Y.S.: Reversible conversion of conducting
polymer films from superhydrophobic to superhydrophilic. Angew. Chem. Int. Ed. 44 (37),
6009-6012 (2005)
185. Mie, G.: Ultra Water-Repellent Surface Resulting from Complicated Microstructure of SiO2
nano particles Ann. Phys. 25, 377 (1908)
186. Soeno, T., Inokuchi, K., Shiratori, S.: Trans. Mater. Res. Soc. Jpn 28 (2003)
187. Nakajima, A., Hashimoto, K., Watanabe, T., Takai, K., Yamauchi, G., Fujishima, A.:
Transparent superhydrophobic thin films with self-cleaning properties. Langmuir 16 (17),
7044-7047 (2000)
188. Fresnais, J., Chapel, J.P., Poncin-Epaillard, F.: Synthesis of transparent superhydrophobic
polyethylene surfaces. Surf. Coat.Technol. 200 (18-19), 5296-5305 (2006)
189. Prevo, B.G., Hon, E.W., Velev, O.D.: Assembly and characterization of colloid-based
antireflective coatings on multicrystalline silicon solar cells. J. Mater. Chem. 17 (8), 791-799
(2007)
190. Gu, Z.-Z., Uetsuka, H., Takahashi, K., Nakajima, R., Onishi, H., Fujishima, A., Sato, O.:
Structural color and the lotus effect. Angew. Chem. Int. Ed. 42 (8), 894-897 (2003)
191. Barthlott, W., Schimmel, T., Wiersch, S., Koch, K., Brede, M., Barczewski, M., Walheim, S.,
Weis, A., Kaltenmaier, A., Leder, A., Bohn, H.F.: The salvinia paradox: superhydrophobic
surfaces with hydrophilic pins for air retention under water. Adv. Mater. 22 (21), 2325-2328
(2010)
192. Poetes, R., Holtzmann, K., Franze, K., Steiner, U.: Metastable underwater superhydrophobic-
ity. Phys. Rev. Lett. 105 (16), 166104 (2010)
193. Truesdell, R., Mammoli, A., Vorobieff, P., van Swol, F., Brinker, C.J.: Drag reduction on a
patterned superhydrophobic surface. Phys. Rev. Lett. 97 (4), 044504 (2006)
194. Watanabe, K., Udagawa, Y., Udagawa, H.: Drag reduction of Newtonian fluid in a circular
pipe with a highly water-repellent wall. J. Fluid Mech. 381 , 225-238 (1999)
195. Ou, J., Perot, B., Rothstein, J.P.: Laminar drag reduction in microchannels using ultrahy-
drophobic surfaces. Phys. Fluids 16 (12), 4635-4643 (2004)
196. Ou, J., Rothstein, J.P.: Direct velocity measurements of the flow past drag-reducing ultrahy-
drophobic surfaces. Phys. Fluids 17 (10), 103606-103610 (2005)
197. Shi, F., Niu, J., Liu, J., Liu, F., Wang, Z., Feng, X.Q., Zhang, X.: Towards understanding
why a superhydrophobic coating is needed by water striders. Adv. Mater. 19 (17), 2257-2261
(2007)
198. Washizu, M.: Electrostatic actuation of liquid droplets for micro-reactor applications. IEEE
Trans. Ind. Appl. 34 (4), 732-737 (1998)
199. Pollack, M.G., Fair, R.B., Shenderov, A.D.: Electrowetting-based actuation of liquid droplets
for microfluidic applications. Appl. Phys. Lett. 77 (11), 1725-1726 (2000)
200. Takeda, K., Nakajima, A., Hashimoto, K., Watanabe, T.: Jump of water droplet from a super-
hydrophobic film by vertical electric field. Surf. Sci. 519 (1-2), L589-L592 (2002)
Search WWH ::




Custom Search