Biomedical Engineering Reference
In-Depth Information
of crystallization. In the area of application, apart from the fabrication of photonic
devices, sensor, and tunable lasers, colloidal crystallization has been now applied to
mimic the structural colors and double reflection on silk fabrics, which will exert a
significant impact on textile, personal care, and fashion industries.
Acknowledgements
The
authors
acknowledge
the
supports
from
Singapore
ARC funding
(Project No. T13-0602-P10).
References
1. Gibbs, J.W.: Collected Works. Thermodynamics, vol. I. Longmans and Green, New York
(1928)
2. Votmer, M., Weber, A.: Keimbildung in ubersattigten Gebilden. Z. Phys. Chem. 119 , 277
(1926)
3. Farkas, L.: The speed of germinitive formation in over saturated vapours. Z. Phys. Chem. 125 ,
236-242 (1926)
4. Kaischew, R., Stranski, I.: On the kinetic deflection rate of germ formation. Z. Phys. Chem.
B 26 , 317-326 (1934)
5. Becker, R., Doering, W.: Kinetic treatment of germ formation in supersaturated vapour. Ann.
Phys. 24 , 719-752 (1935)
6. Zeldovich, J.B.: On the theory of new phase formation, cavitation. Acta Physicochim.
U.R.S.S. 18 , 1-22 (1943)
7. Hirth, J.P., Pound, G.M.: Progress in Materials Science: Condensation and Evaporation, vol.
2. Pergamon, Oxford (1963)
8. Nielsen, A.E.: Kinetics of Precipitation. Pergamon, Oxford (1964)
9. Liu, X.Y.: From molecular structure of solid-liquid interfaces to nucleation kinetics: implica-
tions for nanostructure engineering. In: Liu, X.Y., De Yoreo, J.J. (eds.) Nanoscale Structure
and Assembly at Solid-Fluid Interfaces, vol. 2, pp. 109-176. Springer, London (2004)
10. Vekilov, P.G., Galkin, O.: Fundamental aspects of nucleation theory revealed in experiments
with protein solid phases (Chp 5). In: Liu, X.Y., De Yoreo, J.J. (eds.) Nanoscale Structure and
Assembly at Solid-Fluid Interfaces, vol. 1, pp. 105-144. Springer, London (2004)
11. Gasser, U., Weeks, E.R., Schofield, A., Pusey, P.N., Weitz, D.A.: Real-space imaging of
nucleation and growth in colloidal crystallization. Science 292 , 258 (2001)
12. Philpott, M.R.: Atomic scale modelling of the solid-liquid interface (Chp 1). In: Liu, X.Y.,
De Yoreo, J.J. (eds.) Nanoscale Structure and Assembly at Solid-Fluid Interfaces, vol. 1,
pp. 1-55. Springer, London (2004)
13. Zhang, K.Q., Liu, X.Y.: In situ observation of colloidal monolayer nucleation driven by an
alternating electric field. Nature 429 , 739-743 (2004)
14. Hirtzel, C.S., Rajagopalan, R.: Invited review stability of colloidal dispersions. Chem. Eng.
Commun. 33 , 301-324 (1985)
15. Evans, D.F., Wenneerstrom, H.: The Colloidal Domain: Where Physics, Chemistry, Biology,
and Technology Meet. Wiley-VCH, Weinheim (1984)
16. Bradley, J.S.: The chemistry of transition metal colloids (Chp 6). In: Schmid, G. (ed.) Clusters
and Colloids, pp. 459-537. Wiley-VCH, Weinheim (1994)
17. Ostwald, W.: Studien uber die Bildung und Umwandlung fester Korper. Z. Phys. Chem. 22 ,
289 (1897)
18. ten Wolde, P.R., Frenkel, D.: Homogeneous nucleation and the Ostwald step rule. Phys. Chem.
Chem. Phys. 1 , 2191-2196 (1999)
19. Poon, W.: Colloids as big atoms. Science 2004 (304), 830-831 (2004)
20. Frenkel, D.: Playing tricks with designer “Atoms”. Science 2002 (296), 65-66 (2002)
Search WWH ::




Custom Search