Biomedical Engineering Reference
In-Depth Information
85. Posner, A.S., Perloff, A., Diorio, A.F.: Refinement of the hydroxyapatite structure. Acta
Cryst 11 , 308-309 (1958)
86. Kay, M.I., Young, R.A., Posner, A.S.: Crystal structure of hydroxyapatite. Nature 204 ,
1050-1052 (1964)
87. Young, R.A., Elliott, J.C.: Atomic-scale bases for several properties of apatites. Arch Oral
Biol 11 , 699-707 (1966)
88. Young, R.A., Mackie, P.E.: Crystallography of human tooth enamel: initial structure
refinement. Mater Res Bull 15 , 17-29 (1980)
89. Young, R.A.: Implication of atomic substitutions and other structural details in apatites. J
Dent Res 53 , 193-203 (1974)
90. Hagen, A.R.: Structural features of biologicaly involved phosphates. Acta Odontol Scand 31 ,
149-173 (1973)
91. Arsenault, A.L., Robinson, B.W.: The Dentino-enamel junction: a structural and microana-
lytical study of early mineralization. Calcif Tissue Int 45 , 111-121 (1989)
92. Diekwisch, T.G.H., Berman, B.J., Gentner, S., Slavkin, H.C.: Initial enamel crystals are not
spatially associated with mineralized dentin. Cell Tissue Res 279 , 149-167 (1995)
93. Beniash, E., Simmer, J.P., Margoris, H.C.: The Effect of recombinant mouse amelogeneses
nn the formation and organization of hydroxyapatite crystals in vitro. J Struct Biol 149 ,
182-190 (2005)
94. Tao, J., Pan, H., Zeng, Y., Xu, X., Tang, R.: Roles of Amorphous calcium phosphate and
biological additives in the assembly of hydroxyapatite nanoparticles. J Phys Chem 111 ,
13410-13418 (2007)
95. Wang, L., Guan, X., Chang, D., Moradian-Oldak, J., Nancollas, G.H.: Amelogenin promotes
the formation of elongated apatite microstructures in a controlled crystallization system. J
Phys Chem 111 , 6398-6404 (2007)
96. Yang, X., Wang, L., Qin, Y., Sun, Z., Henneman, Z.J., Moradian-Oldak, J., Nancollas, G.H.:
How amelogenin orchestrates the organization of hierarchical elongated microstructures of
apatite. J Phys Chem 114 (6), 22293-22300 (2010)
97. Shaw, W.J., Campbell, A.A., Pain, M., Snead, M.L.: The COOH terminus of the amelogenin,
LRAP, is oriented next to hydroxyapatite surface. J Biol Chem 279 , 40263-40266 (2004)
98. Tarasevich, B.J., Howard, C.J., Larson, J.L., Snead, M.L., Simmer, J.P., Pain, M., Shaw,
W.J.: The nucleation and growth of calcium phosphate by amelogenin. J Cryst Growth 304 ,
407-415 (2007)
99. Kirkham, J., Zhang, J., Brookes, S.J., Shore, R.C., Ryu, O.H., Wood, S.R., Smith, D.A.,
Wallwork, M.L., Robinson, C.: Evidence for charge domains on developing enamel crystal
surfaces. J Dent Res 79 , 1943-1947 (2000)
100. Bouropoulos, N., Moradian-Oldak, J.: Induction of apatite by the cooperative effect of
amelogenin and 32 kDa enamelin. J Dent Res 83 , 278-282 (2004)
101. Fan, D., Lakshminarayanan, R., Moradian-Oldak, J.: The 32 kDa enamelin undergoes
conformational transitions upon calcium binding. J Struct Biol 163 , 109-115 (2008)
102. Fan, D., Chan, D., Sun, Z., Lakshminarayanan, R., Moradian-Oldak, J.: In vitro study on the
interaction between the 32 kDa enamelin and amelogenin. J Struct Biol 166 , 88-94 (2009)
103. Iijima, M., Fan, D., Bromly, K. M., Sun, Z., Moradian-Oldak, J.: The 32 kDa enamelin
undergoes conformational transitions upon calcium binding. Crystal Growth. Design, (under
review). (2010)
104. Combes, C., Rey, C.: Amorphous calcium phosphates synthesis, properties and uses in
biomaterials. Acta Biomaterialia. 6 (9), 3362-3378 (2010)
105. Eanes, D.E.: Amorphous calcium phosphate. In: Chow, L.C., Eanes, E.D. (eds.) Octacalcium
phosphate, vol. 18, pp. 130-147. Monograp. Oral Sci, Basel, Karger (2001)
106. Eanes, E.D., Posner, A.S.: Intermediate phases in the basic solution preparation of alkaline
earth phosphates. Calcif Tissue Res 2 , 38-48 (1968)
107. Termin, J.D., Peckauskas, R.A., Ponser, A.S.: Calcium phosphate formation in vitro. II.
Effects of environment on amorphous-crystalline transition. Arch. Biochem. Biophys. 140 ,
318-325 (1970)
Search WWH ::




Custom Search