Biomedical Engineering Reference
In-Depth Information
properties of the enamel matrix, along with in vitro evidence provided by advanced
technologies, have been improving our understanding of tooth enamel formation.
Further in vitro studies should enable us to better explain the mechanisms and fine-
tune the formation scenario and new findings, like the coexistence of phosphates and
carbonates in the crayfish mandibles, might require reconstruction of a phylogenic
perspective of biominerals.
References
1. Nanci, A.: TenCate's
oral histology: histology development,
& function.
Chapter 7,
pp. 138-179. Mosby Inc., (2003)
2. Watson, M.L.: The extracellular nature of enamel in the rat. J Biophys Biochem Cytol 23 ,
447-497 (1960)
3. Fukae, M., Shimizu, M.: Studies on the proteins of developing bovine enamel. Arch Oral
Biol 19 , 381-386 (1974)
4. Glimcher, M.J., Mechanis, G.L., Friberg, U.A.: The amino acid composition of the organic
matrix and the neutral soluble and acid soluble components of embrionic bovine enamel.
Biochem J 93 , 198-202 (1964)
5. Robinson, C., Hiller, C.R., Weatherell, J.A.: Uptake of 32 P-labelled phosphate into develop-
ing rat incisor enamel. Calcf. Tissue. Res. 15 , 143-152 (1974)
6. Bawden, J.W., Merritt, D.H., Deaton, T.G.: In vitro study of calcium-45 and phosphorus-
32 uptake in developing rat molar enamel using quantitative methods. Arch Oral Biol 26 ,
477-482 (1981)
7. Takano, Y., Crenshaw, M.A., Bawden, J.W., Hammarstrom, L., Lindskog, S.: The Visual-
ization of the patterns of ameloblast modulation by the glyoxal bis(2-hydroxyanil) staining
method. J Dent Res 61 , 1580-1586 (1982)
8. Takano, Y., Crenshaw, M.A., Reith, E.J.: Correlarion of 45 Ca incorporation with maturation
ameloblast morphology in the rat incisor. Calcif Tissue Int 34 , 211-213 (1982)
9. Kawamoto, T., Shimidzu, M.: Changes in the mode of calcium and phosphate transport
during rat incisal enamel formation. Calcif Tissue Int 46 , 406-414 (1990)
10. Kawamoto, T., Shimidzu, M.: Changes of the ratio of calcium to phosphate transported into
the mineralizing enamel, dentin, and bone. Jpn J Oral Biol 36 , 365-382 (1994)
11. Deakins, M.: Changes in the ash, water, and organic content of pig enamel during
calcification. J Dent Res 21 , 429-435 (1942)
12. Robinson, C., Briggs, H.D., Atkinson, P.J., Weatherell, J.A.: Matrix and mineral changes in
developing enamel. J Dent Res 58 , 871-880 (1984)
13. Weidmann, S.M., Weatherell, J.A., Hamm, S.: Variations of enamel density in sections of
human teeth. Arch Oral Biol 12 , 85-97 (1967)
14. Eastoe, J.E.: The amino acid composition of proteins from the oral tissue-II. The matrix
proteins in dentine and enamel from developing human deciduous teeth. Arch Oral Biol 8 ,
633-652 (1963)
15. Fincham, A.G.: The amelogenin problem; A comparison of purified enamel matrix proteins.
Calcif Tissue Int 26 , 65-73 (1979)
16. Takagi, T., Sasaki, S., Baba, T.: Complete amino acid sequence of amelogenin in developing
bovine enamel. Biochem Biophys Res Commun 121 , 592-597 (1984)
17. Snead, M.L., Lau, E.C., Zeichner-David, M., Fincham, A.G., Woo, S.L.C., Slavkin, H.C.:
DNA sequence for cloned cDNA for murine amelogenin reveal the amino acid sequence for
enamel-specific protein. Biochem Biophys Res Commun 129 , 812-818 (1985)
18. Simmer, J.P., Lau, E.C., Hu, C.C., Aoba, T., Lacey, M., Nelson, D., Zeichner-David, M.,
Snead, M.L., Slavkin, H.C., Fincham, A.G.: Isolation and characterization of a mouse
amelogenin expressed in Escherichia coli . Calcif Tissue Int 54 , 312-319 (1994)
Search WWH ::




Custom Search