Biomedical Engineering Reference
In-Depth Information
by the dynamic actin cytoskeleton. The experimental setup described here for
observation of keratocytes by phase contrast microscopy enables detection of cell
peripheral dynamics in a whole cell with sub-micrometer spatial resolution and a
sub-second temporal resolution for an observation duration of minutes. The hierar-
chical properties can be extracted by varying the level of coarse graining of the
quantitative data contained in a sequence of images. The multiscale data demon-
strates a spatiotemporally nested pattern of travelling waves characterized by local
protruding domains embedded in a global protruding region. The top-down approach
for multiscale analysis based on high-resolution and wide-fi eld live cell imaging
data can clarify the characteristics of hierarchically coordinated cellular protrusion
resulting from an actin cytoskeletal system (Pollard and Cooper 2009 ; Ponti et al.
2004 ) that involves structurally and kinetically different actin networks.
References
Adachi T, Okeyo KO, Shitagawa Y, Hojo M (2009) Strain fi eld in actin fi lament network in lamel-
lipodia of migrating cells: implication for network reorganization. J Biomech 42(3):297-302.
doi: 10.1016/j.jbiomech.2008.11.012
Dada JO, Mendes P (2011) Multi-scale modelling and simulation in systems biology. Integr Biol
3(2):86-96. doi: 10.1039/C0ib00075b
Dobereiner HG, Dubin-Thaler BJ, Hofman JM, Xenias HS, Sims TN, Giannone G, Dustin ML,
Wiggins CH, Sheetz MP (2006) Lateral membrane waves constitute a universal dynamic pat-
tern of motile cells. Phys Rev Lett 97(3):038102
Dubin-Thaler BJ, Giannone G, Dobereiner HG, Sheetz MP (2004) Nanometer analysis of cell
spreading on matrix-coated surfaces reveals two distinct cell states and STEPs. Biophys J
86(3):1794-1806. doi: 10.1016/S0006-3495(04)74246-0
Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai
Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature
472(7341):51-58. doi: 10.1038/Nature09941
Eiraku M, Adachi T, Sasai Y (2012) Relaxation-expansion model for self-driven retinal morpho-
genesis: a hypothesis from the perspective of biosystems dynamics at the multi-cellular level.
Bioessays 34(1):17-25. doi : 10.1002/bies.201100070
Euteneuer U, Schliwa M (1984) Persistent, directional motility of cells and cytoplasmic fragments
in the absence of microtubules. Nature 310(5972):58-61. doi: 10.1038/310058a0
Fletcher DA, Mullins D (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485-492.
doi: 10.1038/Nature08908
Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol
188(1):11-19. doi: 10.1083/jcb.200909003
Gjorevski N, Nelson CM (2010) Endogenous patterns of mechanical stress are required for branch-
ing morphogenesis. Integr Biol 2(9):424-434. doi : 10.1039/C0ib00040j
Grosberg A, Kuo PL, Guo CL, Geisse NA, Bray MA, Adams WJ, Sheehy SP, Parker KK (2011)
Self-organization of muscle cell structure and function. PLoS Comput Biol 7(2):e1001088.
doi: 10.1371/journal.pcbi.1001088
Jiang XY, Bruzewicz DA, Wong AP, Piel M, Whitesides GM (2005) Directing cell migration with
asymmetric micropatterns. Proc Natl Acad Sci U S A 102(4):975-978. doi: 10.1073/
pnas.0408954102
Kitano H (2002) Computational systems biology. Nature 420(6912):206-210. doi: 10.1038/
Nature01254
Search WWH ::




Custom Search