Biology Reference
In-Depth Information
Table 2.1 Properties of common solvatochromic fluorescent dyes a
Apolar
solvent
(Toluene)
Polar solvent
(MeOH)
l Abs (nm)
(MeOH)
« max
(MeOH)
l Fluo
(nm)
QY
(%)
l Fluo
(nm)
QY
(%)
D n Fluo
(cm - 1 )
Dye
Refs.
308 b
695 c
0.1 c 476
Fluoroprobe
12,000
46
6620
14
<
FR0
396
43,000
570
19
434
98
5500
15
Dapoxyl Ò
derivatives
373
28,000
584
39
457
86
4760
16
Prodan
361
18,400
498
51
417
55
3900
17
3MC-2
445
29,000
597
1.4
485
68
3870
18
6DMN
382
8000
589
1.2
491
21
3390
19
12,100 d
Anthradan
456
604
41
507
58
3170
20
12 e
457 c
62 c
4DMP
396
6500
534
3160
21
Dansyl
derivatives
335
4600
526
49
471
81
2220
22
Nile Red
553
45,000
632
38
569
90
1750
23
NBD
465
22,000
541
-
529
-
420
24
a
l Abs , absorption maximum; e max , absorption coefficient (M -1 cm -1 ); l Fluo , fluorescence maximum; QY,
fluorescence quantum yield; MeOH, methanol; d n Fluo , band shift in response to change of solvent from
toluene to methanol.
b
Data in cyclohexane.
c Tetrahydrofuran.
d
Acetonitrile.
e
Dioxane.
brightness and red-shifted absorption, together with high fluorescence
solvatochromism.
To label biomolecules with solvatochromic dyes, their amino or thiol-
reactive derivatives are commonly used. In solvatochromic labels, the
fluorophore should be connected to the reactive group through the shortest
possible linker, in order to localize it precisely at the labeling site of a
biomolecule of interest. However, the most efficient method of site-specific
protein labeling corresponds to the direct introduction of the amino acid
derivative of the solvatochromic dye into the peptide. This can be achieved
by solid-state peptide synthesis or by using cellular protein synthesis
Search WWH ::




Custom Search