Biology Reference
In-Depth Information
118. Corey PF, Trimmer RW, Biddlecom WG. A new chromogenic b -galactosidase sub-
strate: 7- b -D-galactopyranosyloxy-9,9-dimethyl-9 H -acridin-2-one. Angew Chem Int
Ed 1991; 30 :1646-8.
119. Warther D, Bolze F, Leonard J, Gug S, Specht A, Puliti D, et al. Live-cell one- and
two-photon uncaging of a far-red emitting acridinone fluorophore. J Am Chem Soc
2010; 132 :2585-90.
120. Leira F, Vieites J, Vieytes M, Botana L. Characterization of 9 H -(1,3-dichlor-
9,9-dimethylacridin-2-ona-7-yl)-phosphate (DDAO) as substrate of PP-2A in a fluori-
metric microplate assay for diarrhetic shellfish toxins (DSP). Toxicon 2000; 38 :1833-44.
121. Rush JS, Beatty KE, Bertozzi CR. Bioluminescent probes of sulfatase activity.
ChemBioChem 2010; 11 :2096-9.
122. Waggoner A. Dye indicators of membrane potential. Ann Rev Biophys Bioeng
1979; 8 :47-68.
123. Rye HS, Yue S, Wemmer DE, Quesada MA, Haugland RP, Mathies RA, et al. Stable
fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cy-
anine dyes: properties and applications. Nucleic Acids Res 1992; 20 :2803-12.
124. Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS. Cyanine dye labeling
reagents: sulfoindocyanine succinimidyl esters. Bioconjugate Chem 1993; 4 :105-11.
125. Waggoner A. Fluorescent labels for proteomics and genomics. Curr Opin Chem Biol
2006; 10 :62-6.
126. Waggoner A, Kenneth S. Covalent labeling of proteins and nucleic acids with
fluorophores. Methods Enzymol 1995; 246 :362-73.
127. Thomas, N., Michael, N. P., Millar, V., Davies, B. & Briggs, M. S. J. Fluorescent de-
tection method and reagent. U.S. Patent 7,662,973, February 16, 2010.
128. Kiyose K, Aizawa S, Sasaki E, Kojima H, Hanaoka K, Terai T, et al. Molecular design
strategies for near-infrared ratiometric fluorescent probes based on the unique spectral
properties of aminocyanines. Chem Eur J 2009; 15 :9191-200.
129. Maurel D, Banala S, Laroche T, Johnsson K. Photoactivatable and photoconvertible
fluorescent probes for protein labeling. ACS Chem Biol 2010; 5 :507-16.
130. Song F, Peng X, Lu E, Wang Y, Zhou W, Fan J. Tuning the photoinduced electron
transfer in near-infrared heptamethine cyanine dyes. Tetrahedron Lett 2005; 46 :4817-20.
131. Karton-Lifshin N, Segal E, Omer L, Portnoy M, Satchi-Fainaro R, Shabat D. A unique
paradigm for a turn-ON near-infrared cyanine-based probe: non-invasive intravital
optical imaging of hydrogen peroxide. J Am Chem Soc 2011; 133 :10960-5.
132. van de Linde S, KrstiĀ“ I, Prisner T, Doose S, Heilemann M, Sauer M. Photoinduced
formation of reversible dye radicals and their impact on super-resolution imaging. Pho-
tochem Photobiol Sci 2010; 10 :499-506.
133. Dempsey GT, Bates M, Kowtoniuk WE, Liu DR, Tsien RY, Zhuang X.
Photoswitching mechanism of cyanine dyes. J Am Chem Soc 2009; 131 :18192-3.
134. Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X. Evaluation of fluorophores
for optimal performance in localization-based super-resolution imaging. Nat Methods
2011; 8 :1027-36.
135. Adie E, Kalinka S, Smith L, Francis M, Marenghi A, Cooper M, et al. A pH-sensitive
fluor, CypHer-5, used to monitor agonist-induced G protein-coupled receptor inter-
nalization in live cells. Biotechniques 2002; 33 :1152-7.
136. Oushiki D, Kojima H, Terai T, Arita M, Hanaoka K, Urano Y, et al. Development and
application of a near-infrared fluorescence probe for oxidative stress based on differen-
tial reactivity of linked cyanine dyes. J Am Chem Soc 2010; 132 :2795-801.
137. Ozmen B, Akkaya EU. Infrared fluorescence sensing of submicromolar calcium: push-
ing the limits of photoinduced electron transfer. Tetrahedron Lett 2000; 41 :9185-8.
138. Stewart WW. Synthesis of 3,6-disulfonated 4-aminonaphthalimides. J Am Chem Soc
1981; 103 :7615-20.
Search WWH ::




Custom Search