Biology Reference
In-Depth Information
32. Gao W, Xing B, Tsien RY, Rao J. Novel fluorogenic substrates for imaging
b -lactamase gene expression. J Am Chem Soc 2003; 125 :11146-7.
33. van Tilbeurgh H, Claeyssens M. Detection and differentiation of cellulase components
using low molecular mass fluorogenic substrates. FEBS Lett 1985; 187 :283-8.
34. Leroy E, Bensel N, Reymond J-L. A low background high-throughput screening
(HTS) fluorescence assay for lipases and esterases using acyloxymethylethers of
umbelliferone. Bioorg Med Chem Lett 2003; 13 :2105-8.
35. Babiak P, Reymond J-L. A high-throughput, low-volume enzyme assay on solid
support. Anal Chem 2005; 77 :373-7.
36. Uttamapinant C, White KA, Baruah H, Thompson S, Fern´ndez-Su´rez M,
Puthenveetil S, et al. A fluorophore ligase for site-specific protein labeling inside living
cells. Proc Natl Acad Sci USA 2010; 107 :10914-9.
37. Zimmerman M, Ashe B, Yurewicz EC, Patel G. Sensitive assays for trypsin,
elastase, and chymotrypsin using new fluorogenic substrates. Anal Biochem
1977; 78 :47-51.
38. Salisbury CM, Maly DJ, Ellman JA. Peptide microarrays for the determination of
protease substrate specificity. J Am Chem Soc 2002; 124 :14868-70.
39. Amsberry KL, Borchardt RT. The lactonization of 2 0 -hydroxyhydrocinnamic acid-
amides: a potential prodrug for amines. J Org Chem 1990; 55 :5867-77.
40. Yee DJ, Balsanek V, Sames D. New tools for molecular imaging of redox metabolism:
development of a fluorogenic probe for 3 a -hydroxysteroid dehydrogenases. J AmChem
Soc 2004; 126 :2282-3.
41. Zhao YR, Zheng Q, Dakin K, Xu K, Martinez ML, Li WH. New caged coumarin
fluorophores with extraordinary uncaging cross sections suitable for biological imaging
applications. J Am Chem Soc 2004; 126 :4653-63.
42. Guo YM, Chen S, Shetty P, Zheng G, Lin R, Li W. Imaging dynamic cell-cell junc-
tional coupling in vivo using Trojan-LAMP. Nat Methods 2008; 5 :835-41.
43. Sokkalingam P, Lee C-H. Highly sensitive fluorescence “turn-on” indicator for
fluoride anion with remarkable selectivity in organic and aqueous media. J Org Chem
2011; 76 :3820-8.
44. Lemieux GA, de Graffenried CL, Bertozzi CR. A fluorogenic dye activated by the
Staudinger ligation. J Am Chem Soc 2003; 125 :4708-9.
45. Loudet A, Burgess K. BODIPY dyes and their derivatives: syntheses and spectroscopic
properties. Chem Rev 2007; 107 :4891-932.
46. Ulrich G, Ziessel R, Harriman A. The chemistry of fluorescent BODIPY dyes:
versatility unsurpassed. Angew Chem Int Ed 2008; 47 :1184-201.
47. Boens N, Leen V, DehaenW. Fluorescent indicators based on BODIPY. Chem Soc Rev
2012; 41 :1130-72.
48. Thompson VF, Salda˜a S, Cong J, Goll DE. A BODIPY fluorescent microplate
assay for measuring activity of calpains
and other proteases. Anal Biochem
2000; 279 :170-8.
49. Rurack K, Kollmannsberger M, Daub J. A highly efficient sensor molecule emitting in
the near infrared (NIR): 3,5-distyryl-8-( p -dimethylaminophenyl) difluoroboradiaza-
s -indacene. New J Chem 2000; 25 :289-92.
50. Koutaka H, Kosuge J, Fukasaku N, Hirano T, Kikuchi K, Urano Y, et al. A novel fluo-
rescent probe for zinc ion based on boron dipyrromethene (BODIPY) chromophore.
Chem Pharm Bull 2004; 52 :700-3.
51. Kamiya M, Johnsson K. Localizable and highly sensitive calcium indicator based on a
BODIPY fluorophore. Anal Chem 2010; 82 :6472-9.
52. Baeyer A. Ueber eine neue Klasse von Farbstoffen. Ber Dtsch Chem Ges 1871; 4 :555-8.
53. Lavis LD, Rutkoski TJ, Raines RT. Tuning the p K a of fluorescein to optimize binding
assays. Anal Chem 2007; 79 :6775-82.
Search WWH ::




Custom Search