Biology Reference
In-Depth Information
127. Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, et al. Develop-
ment of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol
Cell 2011; 22 (23):4647-56.
128. Levskaya A, Weiner OD, LimWA, Voigt CA. Spatiotemporal control of cell signalling
using a light-switchable protein interaction. Nature 2009; 461 (7266):997-1001.
129. Mitra RD, Silva CM, Youvan DC. Fluorescence resonance energy transfer between
blue-emitting and red-shifted excitation derivatives of the green fluorescent protein.
Gene 1996; 173 (1 Spec No):13-7.
130. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, et al. Fluorescent
indicators for Ca2 þ based on green fluorescent proteins and calmodulin. Nature
1997; 388 (6645):882-7.
131. Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA,
et al. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield
of 93%. Nat Commun 2012; 3 :751.
132. Nguyen AW, Daugherty PS. Evolutionary optimization of fluorescent proteins for
intracellular FRET. Nat Biotechnol 2005; 23 (3):355-60.
133. Ouyang M, Sun J, Chien S, Wang Y. Determination of hierarchical relationship of Src
and Rac at subcellular locations with FRET biosensors. Proc Natl Acad Sci USA
2008; 105 (38):14353-8.
134. Kawai Y, SatoM, Umezawa Y. Single color fluorescent indicators of protein phosphor-
ylation for multicolor imaging of intracellular signal flow dynamics. Anal Chem 2004; 76
(20):6144-9.
135. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A. Expanded dynamic range
of fluorescent indicators for Ca(2 þ ) by circularly permuted yellow fluorescent proteins.
Proc Natl Acad Sci USA 2004; 101 (29):10554-9.
136. Ananthanarayanan B, Ni Q, Zhang J. Signal propagation from membrane messengers
to nuclear effectors revealed by reporters of phosphoinositide dynamics and Akt activ-
ity. Proc Natl Acad Sci USA 2005; 102 (42):15081-6.
137. Sasaki K, Sato M, Umezawa Y. Fluorescent indicators for Akt/protein kinase B and
dynamics of Akt activity visualized in living cells. J Biol Chem 2003; 278 (33):30945-51.
138. Palmer AE, et al. Bcl-2-mediated alterations in endoplasmic reticulum Ca2 þ analyzed
with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci USA
2004; 101 (50):17404-9.
139. Spriet C, Trinel D, Riquet F, Vandenbunder B, Usson Y, Heliot L. Enhanced FRET
contrast in lifetime imaging. Cytometry A 2008; 73 (8):745-53.
140. Dunn KW, Mayor S, Myers JN, Maxfield FR. Applications of ratio fluorescence
microscopy in the study of cell physiology. FASEB J 1994; 8 :573-83.
141. Tomazevic D, Likar B, Pernus F. Comparative evaluation of retrospective shading
correction methods. J Microsc 2002; 208 (Pt 3):212-23.
142. Tsien RY, Harootunian AT. Practical design criteria for a dynamic ratio imaging
system. Cell Calcium 1990; 11 (2-3):93-109.
143. Thevenaz P, Ruttimann UE, Unser M. A pyramid approach to subpixel registration
based on intensity. IEEE Trans Image Process 1998; 7 (1):27-41.
144. Dross N, Spriet C, Zwerger M, Muller G, Waldeck W, Langowski J. Mapping eGFP
oligomer mobility in living cell nuclei. PLoS One 2009; 4 (4):e5041.
145. Liu S, Zhang J, Xiang YK. FRET-based direct detection of dynamic protein kinase A ac-
tivity on the sarcoplasmic reticulum in cardiomyocytes. Biochem Biophys Res Commun
2011; 404 (2):581-6.
146. Castro LR, Gervasi N, Guiot E, Cavellini L, Nikolaev VO, Paupardin-Tritsch D, et al.
Type 4 phosphodiesterase plays different integrating roles in different cellular domains
in pyramidal cortical neurons. J Neurosci 2010; 30 (17):6143-51.
Search WWH ::




Custom Search