Biology Reference
In-Depth Information
36. Cameron CE, Moustafa IM, Arnold JJ. Dynamics: the missing link between structure
and function of the viral RNA-dependent RNA polymerase? Curr Opin Struct Biol
2009; 19 (6):768-74.
37. Creighton TE. The biophysical chemistry of nucleic acids and proteins. Helvetian Press; 2010.
38. Divita G, M¨ ller B, Immend¨ rfer U, Gautel M, Rittinger K, Restle T, et al. Kinetics of
interaction of HIV reverse transcriptase with primer/template. Biochemistry 1993; 32
(31):7966-71.
39. Liu S, Harada BT, Miller JT, Le Grice SF, Zhuang X. Initiation complex dynamics
direct the transitions between distinct phases of early HIV reverse transcription. Nat
Struct Mol Biol 2010; 17 :1453-60.
40. Abbondanzieri EA, Bokinsky G, Rausch JW, Zhang JX, Le Grice SF, Zhuang X.
Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature
2008; 453 (7192):184-9.
41. Agopian A, Depollier J, Lionne C, Divita G. p66 Trp24 and Phe61 are essential for
accurate association of HIV-1 reverse transcriptase with primer/template. J Mol Biol
2007; 373 (1):127-40.
42. Johnson KA. Advances in transient-state kinetics. Curr Opin Biotechnol 1998; 9 (1):87-9.
43. Gutfreund H. Rapid-flow techniques and their contributions to enzymology. Trends
Biochem Sci 1999;
(11):457-60.
44. Barman TE, Bellamy SR, Gutfreund H, Halford SE, Lionne C. The identification of
chemical intermediates in enzyme catalysis by the rapid quench-flow technique. Cell
Mol Life Sci 2006; 63 (22):2571-83 [Review].
45. Rittinger K, Divita G, Goody RS. Human immunodeficiency virus reverse transcrip-
tase substrate-induced conformational changes and the mechanism of inhibition by
nonnucleoside inhibitors. Proc Natl Acad Sci USA 1995; 92 (17):8046-9.
46. Patel SS, Pandey M, Nandakumar D. Fluorescence-based assay to measure the real-
time kinetics of nucleotide incorporation during transcription elongation. Curr Opin
Chem Biol 2011; 15 (5):595-605.
47. Tang GQ, Roy R, Ha T, Patel SS. Mechanism of transcription initiation by the yeast
mitochondrial RNA polymerase. Mol Cell 2008; 30 (5):567-77.
48. Kim H, Tang GQ, Patel SS, Ha T. Dynamic coupling between the motors of DNA
replication: hexameric helicase, DNA polymerase, and primase. Nucleic Acids Res
2012; 40 (1):371-80.
49. Fourar M, Divita G. Fluorescence-based methods to monitor the real-time kinetics of
nucleotide incorporation by NS5B, RNA polymerase (submitted).
50. Lehto T, Ezzat K, Langel U. Peptide nanoparticles for oligonucleotide delivery. Prog
Mol Biol Transl Sci 2011; 104 :397-426.
51. Crombez L, Morris MC, Deshayes S, Heitz F, Divita G. Peptide-based nanoparticle for
ex vivo and in vivo drug delivery. Curr Pharm Des 2008; 14 (34):3656-65.
52. Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides: from mo-
lecular mechanisms to therapeutics. Br J Pharmacol 2009; 157 (2):195-206.
53. Morris MC, Deshayes S, Heitz F, Divita G. Cell-penetrating peptides: from molecular
mechanisms to therapeutics. Biol Cell 2008; 100 (4):201-17.
54. Morris MC, Vidal P, Chaloin L, Heitz F, Divita G. A new peptide vector for efficient de-
livery of oligonucleotides into mammalian cells. Nucleic Acids Res 1997;
24
(14):2730-6.
55. Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, Brasseur R,
et al. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery
into mammalian cells. Mol Ther 2009; 17 (1):95-103.
56. Konate K, Crombez L, Deshayes S, Decaffmeyer M, Thomas A, Brasseur R, et al.
Insight into the cellular uptake mechanism of a secondary amphipathic cell-penetrating
peptide for siRNA delivery. Biochemistry 2010; 49 (16):3393-402.
25
Search WWH ::




Custom Search