Biology Reference
In-Depth Information
100. Noh YW, Park HS, Sung M-H, Lim YT. Enhancement of the photostability and re-
tention time of indocyanine green in sentinel lymph node mapping by anionic poly-
electrolytes. Biomaterials 2011;32:6551-7.
101. Chen J, Corbin IR, Li H, Cao W, Glickson JD, Zheng G. Ligand conjugated low-
density lipoprotein nanoparticles for enhanced optical cancer imaging in vivo. JAm
Chem Soc 2007;129:5798-9.
102. Proulx ST, Lucini P, Dierzsi S, Rindkerknecht M, Mumprecht V, Leroux J-C, et al.
Quantitative imaging of lymphatic function with liposomal indocyanine green. Cancer
Res 2010;70:7053-62.
103. BwambokDK, El-Zahab B, Challa SK, Li M, Chandler L, Baker GA, et al. Near-infrared
fluorescent nanoGUMBOS for biomedical imaging. ACS Nano 2009;3:3854-60.
104. Akers WJ, Kim C, Berezin M, Guo K, Fuhrhop R, Lanza GM, et al. Noninvasive
photoacustic and fluorescence sentinel lymph node identification using dye-loaded per-
fluorocarbon nanoparticles. ACS Nano 2011;5:173-82.
105. Tanisaka H, Kizaka-Kondoh S, Makino A, Tanaka S, Hiraoka M, Kimura S. Near-
infrared fluorescent labeled peptosome for application to cancer imaging. Bioconjugate
Chem 2008;19:109-17.
106. Beverina L, Salice P. Squaraine compounds: tailored design and synthesis towards a va-
riety of material science applications. Eur J Org Chem 2010;
:1207-25.
107. Yagi S, Nakazumi H. Squarylium dyes and related compounds. Top Heterocycl Chem
2008;14:133-81.
108. Terenziani F, Painelli A, Katan C, Charlot M, Blanchard-Desce M. Charge instability
in quadrupolar chromophores: symmetry breaking and solvatochromism. J Am Chem
Soc 2006;128:15742-55.
109. Arunkumar E, Forbes CC, Noll BC, Smith BD. Squaraine-derived rotaxanes: sterically
protected fluorescent near-IR dyes. J Am Chem Soc 2005;127:3288-9.
110. Chen H, Farahat MS, Law K-Y, Whitten DG. Aggregation of surfactant squaraine dyes
in aqueous solution and microheterogeneous media: correlation of aggregation behav-
ior with molecular structure. J Am Chem Soc 1996;118:2584-94.
111. Ros-Lis JV, Garcia B, Jim´nez D, Martinez-Ma˜ez R, Sancen´n F, Soto J, et al.
Squaraines as fluoro-chromogenic probes for thiol-containing compounds and their
application to the detection of biorelevant thiols. J Am Chem Soc 2004;126:4064-5.
112. Gassensmith JJ, Baumes JM, Smith BD. Discovery and early development of squaraine
rotaxanes. Chem Commun 2009;14:6329-38.
113. Arunkumar E, Fu N, Smith BD. Squaraine-derived rotaxanes: highly stable, fluorescent
near-IR dyes. Chem Eur J 2006;12:4684-90.
114. Gassensmith JJ, Arunkumar E, Barr L, Baumes JM, DiVittorio KM, Johnson JR, et al.
Self-assembly of fluorescent inclusion complexes in competitive media including the
interior of living cells. J Am Chem Soc 2007;129:15054-9.
115. Xiao S, Fu N, Peckham K, Smith BD. Efficient synthesis of fluorescent squaraine
rotaxane dendrimers. Org Lett 2010;12:140-3.
116. Gassensmith JJ, Barr L, Baumes JM, Paek A, Nguyen A, Smith BD. Synthesis and
photophysical
2010
investigation of squaraine rotaxanes by “clicked capping” Org Lett
:3343-6.
117. Cole EL, Arunkumar E, Xiao S, Smith BA, Smith BD. Water-soluble, deep-red fluo-
rescent squaraine rotaxanes. Org Biomol Chem 2012;
2008;
10
:5769-73.
118. Johnson JR, Fu N, Arunkumar E, Leevy M, Gammon ST, Piwnica-Wrms D, et al.
Squaraine rotaxanes: superior substitutes for Cy-5 in molecular probes for near-infrared
fluorescence cell imaging. Angew Chem Int Ed 2007;46:5528-31.
119. White AG, Fu N, Leevy WM, Lee J-J, Blasco MA, Smith BD. Optical imaging of bac-
terial infection in living mice using deep-red fluorescent squaraine rotaxane probes.
Bioconjugate Chem 2010;21:1297-304.
10
Search WWH ::




Custom Search