Biology Reference
In-Depth Information
81. Peng X, Song F, Lu E, Wang Y, ZhouW, Fan J, et al. Heptamethine cyanine dyes with
a large Stokes shift and strong fluorescence: a paradigm for excited-state intramolecular
charge transfer. J Am Chem Soc 2005;127:4170-1.
82. Samanta A, Vendrell M, Das R, Chang Y-T. Development of photostable near-
infrared cyanine dyes. Chem Commun 2010;46:7406-8.
83. Samanta A, Vendrell M, Yun S-W, Guan Z, Xu Q-H, Chang Y-T. A photostable
near-infrared protein-labeling dye for in vivo imaging. Chem Asian J 2011;6:1353-7.
84. Renikuntla BR, Rose HC, Eldo J, Waggoner AS, Armitage BA. Improved photo-
stability and fluorescence properties through polyfluorination of a cyanine dye. Org Lett
2004;6:909-12.
85. Toutchkine A, Nguyen D-V, Hahn KM. Merocyanine dyes with improved photo-
stability. Org Lett 2007;9:2775-7.
86. Chen X, Peng X, Cui A, Wang B, Wang L, Zhang R. Photostabilities of novel
heptamethine 3 H -indoleine cyanine dyes with different N -substituents. J Photochem
Photobiol 2006;181:79-85.
87. Matsuzawa Y, Tamura SI, Matsuzawa N, Ata M. Light stability of a b -cyclodextrin in-
clusion complexes of a cyanine dye. J Chem Soc Faraday Trans 1994;90:3517-20.
88. Guether R, Reddington MV. Photostable cyanine dye b -cyclodextrin conjugates. Tet-
rahedron Lett 1997;
:6167-70.
89. Yau CMS, Pascu SI, Odom SA, Warren JE, Klotz EJF, FramptonMJ, et al. Stabilisation
of a heptamethine cyanine dye by rotaxane encapsulation. Chem Commun
2008;2897-9.
90. Lee C-H, Cheng S-H, Wang Y-J, Chen Y-C, Chen N-T, Souris J, et al. Near-infrared
mesoporous silica nanoparticles for optical imaging: characterization and in vivo bio-
distribution. Adv Funct Mater 2009;19:215-22.
91. Kumar R, Roy I, Ohulchansky TY, Vathy LA, Bergey EJ, Sajjad M, et al. In vivo bio-
distribution and clearance studies using multimodal organically modified silica
nanoparticles. ACS Nano 2010;2:699-708.
92. Barth BM, Sharma R, Altinoglu EI, Morgan TT, Shanmugavelandy SS, Kaiser JM,
et al. Bioconjugation of calcium phosphosilicate composite nanoparticles for selective
targeting of human breast and pancreatic cancers in vivo . ACS Nano 2010;3:1279-87.
93. Xu RX, Huang J, Xu JS, Sun D, Hinkle GH, Martin EW, et al. Fabrication of
indocyanine green encapsulated biodegradable microbbbles for structural and func-
tional imaging of cancer. J Biomed Opt 2009;14:034020-1-6.
94. Tosi G, Bondioli L, Ruozi B, Badiali L, Severini GM, Biffi S, et al. NIR-labeled
nanoparticles engineered for brain targeting: in vivo optical imaging application and
fluorescent microscopy evidences. J Neural Transm 2011;118:145-53.
95. Saxena V, Sadoqi M, Shao J. Enhanced photo-stability, thermal-stability and aqueous-
stability of indocyanine green in polymeric nanoparticulate systems. J Photochem
Photobiol B 2004;74:29-38.
96. Texier I, Goutayer M, Da Silva A, Guyon L, Djaker N, Josserand V, et al. Cyanine-
loaded nanoparticles
38
J Biomed Opt
for improved in vivo fluorescence imaging.
2009;14:054005-1-054005-11.
97. Zheng X, Xing D, Zhou F, Wu B, Chen WR. Indocyanine green-containing nano-
structure as near infrared dual-function targeting probes for optical
imaging and
:447-56.
98. Yu J, Javier D, Yassen MA, Nitin N, Richards-Kortum R, Anvari B, et al. Self-
assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-
coated indocyanine green nanocapsules. J Am Chem Soc 2010;132:272-9.
99. Yu J, Yaseen MA, Anvari B, Wong MS. Synthesis of near-infrared-absorbing
nanoparticle-assembled capsules. Chem Mater 2007;19:1277-84.
photothermal therapy. Mol Pharmaceutics 2011;
8
Search WWH ::




Custom Search