Biology Reference
In-Depth Information
63. Salon J, Wolinska E, Raszkiewicz A, Patonay G, Strekowski L. Synthesis and Benz[ e ]
indolium heptamethine cyanines containing C-substituent at the central portion of the
heptamethine moiety. J Heterocycl Chem 2005;42:959-61.
64. Strekowski L, Mason C, Lee H, Say M, Patonay G. Water-soluble pH-sensitive 2,6-bis
(substituted ethylidene)-cyclohexanone/hydroxy cyanine dyes that absorb in the
visible/near-infrared regions. J Heterocycl Chem 2004;41:227-32.
65. Strekowski L, Lipowska M, Patonay G. Substitution reactions of a nucleofugal group in
heptamethine cyanine dyes. Synthesis of an isothiocyanato derivative for labeling of
proteins with a near-infrared chromophore. J Org Chem 1992;57:4578-80.
66. Lee H, Mason C, Achilefu S. Heptamethine cyanine dyes with a robust C-C bond at
the central position of the chromophore. J Org Chem 2006;71:7862-5.
67. Flanagan Jr. J, Khan SH, Menchen S, Soper SA, Hammer RP. Functionalized
tricarbocyanine dyes as near-infrared fluorescent probes for biomolecules. Bioconjugate
Chem 1997;8:751-6.
68. Lee H, Mason C, Achilefu S. Synthesis and spectral properties of near-infrared
aminophenyl-, hydroxyphenyl-, and phenyl-substituted hepthamethine cyanines.
J Org Chem 2008;73:723-5.
69. Wang W, Ke S, Kwon S, Yallampalli S, Cameron AG, Adams KE, et al. A new optical
and nuclear dual-labeled imaging agent targeting interleukin 11 receptor alpha-chain.
Bioconjugate Chem 2007;18:397-402.
70. Zabeer A, Wheat TE, Frangioni JV. IRDye78 conjugates for near-infrared fluores-
cence imaging. Mol Imaging 2002;1:354-64.
71. Choi HS, Nasr K, Alayabyev S, Feith D, Lee JH, Kim SH, et al. Synthesis and in vivo fate
of zwitterionic near-infrared fluorophores. Angew Chem Int Ed 2011;50:6258-63.
72. Zhang Z, Achilefu S. Synthesis and evaluation of polyhydroxylated near-infrared car-
bocyanine molecular probes. Org Lett 2004;6:2067-70.
73. Licha K, Welker P, Weinhart M, Wegner N, Kern S, Reichert S, et al. Fluorescence
imaging with multifunctional polyglycerol sulfates: novel polymeric near-IR probes
targeting inflammation. Bioconjugate Chem 2011;22:2453-60.
74. Ornelas C, Lodescar R, Durandin A, Canary JW, Pennell R, Liebes LF, et al. Com-
bining aminocyanine dyes with polyamide dendrons: a promising strategy for imaging
in the near-infrared region. Chem Eur J 2011;17:3619-29.
75. Lee H, Akers W, Bhushan K, Bloch S, Sudlow G, Tang R, et al. Near-infrared
pH-activatable fluorescent probes for imaging primary and metastatic breast tumor.
Bioconjugate Chem 2011;22:777-84.
76. Li C, Greenwood TR, Glunde K. Glucosamine-bound near-infrared fluorescent
probes with lysosomal specificity for breast tumor imaging. Neoplasia 2008;10:389-98.
77. Williams MPA, Ethirajan M, Ohkubo K, Chen P, Pera P, Morgan J, et al. Synthesis and
photophysical, electrochemical, tumor-imaging, and phototherapeutic properties of
purpurinimide- N -substituted cyanine dyes joined with variable lengths of linkers.
Bioconjugate Chem 2011;22:2283-95.
78. Smith BA, Akers WJ, Leevy WM, Lampkins AJ, Xiao S, Wolter W, et al. Optical
imaging of mammary and prostate tumors in living animals using a synthetic near in-
frared zinc(II)-dipicoylamine probe for anionic cell
surface.
J Am Chem Soc
:67-9.
79. Smith BA, Gammon ST, Xiao S, Wang W, Chapman S, McDermott R, et al. In vivo
optical imaging of acute cell death using a near-infrared fluorescent zinc-dipicolylamine
probe. Mol Pharmaceutics 2011;8:583-90.
80. Altinoglu EI, Russin TJ, Kaiser JM, Barth BM, Ekklund PC, Kester M, et al. Near-
infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imag-
ing of human breast cancer. ACS Nano 2008;2:2075-84.
2010;
132
Search WWH ::




Custom Search