Geology Reference
In-Depth Information
Leinfelder, R.R. (1994): Karbonatplattformen und Korallen-
riffe innerhalb siliziklastischer Sedimentationsbereiche
(Oberjura, Lusitanisches Becken, Portugal). - Profil, 6 ,
1-207
Lomando, A.J., Harris, P.M. (eds., 1991): Mixed carbonate-
siliciclastic sequences. - Society of Economic Paleontolo-
gists and Mineralogists, Core Workshop Notes, 5 , 580 pp.
McPherson, J.G., Shanmuga, G., Moiola, R. (1987): Fan-
deltas and braid-deltas: varieties of coarse-grained deltas.
- Geological Society of America, Bulletin, 99 , 331-340
Mount, J.F. (1984): Mixing of siliciclastic and carbonate sedi-
mentation in shallow shelf environments. - Geology, 12 ,
432-435
Mount, J.F. (1985): Mixed siliciclastic and carbonate sedi-
ments: a proposed first-order textural and compositional
classification. - Sedimentology, 32 , 435-442
Roberts, H.H. (1987): Modern carbonate-siliciclastic transi-
tions: humid and arid tropical examples. - Sedimentary
Geology, 50 , 25-65
Steuber, T., Yilmaz, C., Löser, H. (1998): Growth rates of
early Campanian rudists in a siliciclastic-calcar eous set-
ting (Pontid Mts., north-central Turkey). - Geobios,
Mémoir spécial, 22 , 385-401
Wilson, M.E.J. (2002): Cenozoic carbonates in SE Asia: im-
plications for equatorial carbonate development. - Sedi-
mentary Geology, 147 , 295-428
Wilson, E.J., Lokier, S.L.(2002): Siliciclastic and volcanic
influences on equatorial carbonates: insights from the Neo-
gene of Indonesia. - Sedimentology, 49 , 583-601
Woolfe, K.A., Lacombe, P. (1999): Terrigenous sedimenta-
tion and coral reef growth: a conceptual framework. - Ma-
rine Geology, 155 , 331-345
Zuffa, G.G. (1985): Optical analysis of arenites: influence of
methodology on compositional composition. - In: Zuffa,
G. G. (ed.): Provenance of arenites. - 165-189, Dordrecht
(Reidel)
Further reading: K089, K167, K182
mary sediment composition, porosity or organic con-
tent must be considered for unequivocal interpretations.
Differential diagenesis in limestone-marl alterna-
tions includes redistribution of calcium carbonate from
marl layers to limestone beds by dissolution, migra-
tion of ions, and reprecipitation. Modern fine-grained
shelf carbonates at low latitudes, which represent re-
cent facies equivalents of many ancient limestone-marl
successions, are generally composed of a mixture of
aragonitic, calcitic and terrigenous material. The pre-
cursor mineralogy of limestone-marl alternations can
be reconstructed using a model developed by Munnecke
and Samtleben (1996), Munnecke (1997), Munnecke
et al. (1997), and Westphal et al. (2000). The model
assumes that the source of Low-Mg calcite carbonate
cement precipitation in the limestone layers is derived
from the dissolution of aragonite in marl layers. Since
the amount of aragonite present in the precursor sedi-
ment limits the amount of calcium carbonate available
for redistribution and precipitation, differential diagen-
esis comes to a halt when the aragonite has been com-
pletely dissolved. Mass balances and initial contents
of aragonite, calcite and insolubles can be calculated.
Mathematical relationships between the thickness of
limestone and marl layers and their carbonate content
can be visualized in an aragonite-calcite-terrigenous
material ternary diagram (Munnecke et al. 2001). The
model is supported by the concentration of limestone-
marl alternations in warm-water settings (Westphal and
Munnecke 2003). This coincides with the high arago-
nite production in these settings at the present time.
Limestone/marl alternations
Bathurst, R.G.C. (1987): Diagenetically enhanced bedding in
argillaceous platform limestones: stratified cementation
and selective compaction. - Sedimentology, 34 , 749-778
Bausch, W.M. (1997): Die Flexibilität der Kalk/'Mergel'-
Grenze und ihre Berechenbarkeit. - Zeitschrift der Deut-
schen Geologischen Gesellschaft, 148 , 247-258
Bellanca, A., Claps, M., Erba, E., Masetti, D., Neri, R.,
Premoli Silva, I., Venezia, F. (1996): Orbitally induced
limestone/marlstone rhythms in the Albian-Cenomanian
Cismon section (Venetian region, northern Italy): sedi-
mentology, calcareous and siliceous plankton distribution,
elemental and isotope geochemistry. - Palaeogeography,
Palaeoclimatology, Palaeoecology, 126 , 227-260
Böhm, F., Westphal, H., Bornholdt, S. (2003): Required but
disguised: environmental signals in limestone-marl alter-
nations. - Palaeogeography, Palaeoclimatology, Palaeo-
ecology, 189 , 161-178
Eder, W. (1982): Diagenetic redistribution of carbonate, a
process in forming limestone-marl alternations (Devonian
and Carboniferous, Rheinisches Schiefergebirge, W. Ger-
many). - In: Einsele, G., Seilacher, A. (eds.): Cyclic and
event stratification. - 98-112, Berlin (Springer)
Einsele, G. (1982): Limestone-marl cycles (peridites): diag-
nosis, significance, causes: a review. - In: Einsele, G.,
Basics: Mixed carbonatesiliciclastic environments, lime
stonemarl alternations
Mixed carbonate-siliciclastic environments
Acker, K.L., Stearn, C.W. (1990): Carbonate-siliciclastic fa-
cies transition and reef growth on the northeast coast of
Barbados. - Journal of Sedimentary Petrology, 60 , 18-25
Braga, J.C., Martin, J.M., Alcala, B. (1990): Coral reefs in
coarse-terrigenous sedimentary environments (Upper
Tortonian, Granada Basin, southern Spain). - Sedimen-
tary Geology, 66 , 135-150
Budd, D.A., Harris, P.M. (eds., 1990): Carbonate-siliciclas-
tic mixtures. - Society of Economic Paleontologists and
Mineralogists, Reprint Series, 14 , 400 pp.
Doyle, L.J., Roberts, H.H. (eds., 1988): Carbonate-clastic
transitions. - Developments in Sedimentology, 42 ,
304 pp., Amsterdam (Elsevier)
Friebe, J.G. (1991): Carbonate sedimentation within a silici-
clastic environment: the Leithakalk of the Weisseneck For-
mation (Middle Miocene, Styria, Austria). - Zentralblatt
für Geologie und Paläontologie, I, 1990 , 1671-1687
Leinfelder, R.R. (1993): A sequence stratigraphic approach
to the Upper Jurassic mixed carbonate siliciclastic suc-
cession of the central Lusitanian Basin, Portugal. - Profil,
5 , 119-140
Search WWH ::




Custom Search