Geology Reference
In-Depth Information
Glauconite
Amorosi, A. (1993): Use of glauconites for stratigraphic cor-
relation: a review and case studies. - Giornale di Geologìa,
55 , 117-137
Chafetz, H.S., Reid, A. (2000): Syndepositional shallow-water
precipitation of glauconite minerals. - Sedimentary Ge-
ology, 136 , 29-42
Odin, G.S., Matter, A. (1981): De glauconiarum origine. -
Sedimentology, 28 , 611-641
Triplehorn, D.E. (1966): Morphology, internal structure, and
origin of glauconite pellets. - Sedimentology, 6 , 247-266
Further reading: K093
oncoids, and intraclasts. Primary phosphatic bioclasts
(vertebrate bones, fish scales and teeth) are common.
Phosphatization of carbonates
Phosphatic particles also form by replacement of car-
bonate substrates, skeletal and non-skeletal carbonate
particles (Fig. 4.16) as well as microbial structures, e.g.
microstromatolites. These particles are characterized
by marginal or complete impregnation/replacement
showing various degrees of preservation of the primary
structures (Swett and Crowder 1982; Rodgers 1994).
Extensive interparticle, intraparticle cementation and
rim cementation by cryptocrystalline carbonate fluora-
patite, starting from the sediment-water interface and
penetrating pelagic carbonates up to a few centimeters
takes place during interruptions in sedimentation.
Intraparticle cements occur within skeletal pores and
boring pores. Skeletal material may be totally trans-
formed to structureless carbonate fluorapatite peloids.
Growth of gradually thickened phosphate coatings (rim
cement) around a single or, more commonly, several
phosphatized skeletal grains or lithoclasts may produce
large coated composite grains. Interparticle cements and
grains appear brownish and isotropic between crossed
nicols, due to the presence of organic matter and iron
oxides (Pl. 110).
Pyrite
Baird, G.C., Brett, C.E. (1986): Erosion of an anaerobic sea-
floor: significance of reworked pyrite deposits from the
Devonian of New York State. - Palaeogeography, Palaeo-
climatology, Palaeoecology, 57 ,157-193
Berner, R.A. (1985): Sulphate reduction, organic matter de-
composition and pyrite formation. - Philosophical Trans-
actions of the Royal Society of London, A315 , 25-38
Canfield, D.R., Raiswell, R. (1991): Pyrite formation and fos-
sil preservation. - In: Allison, P.A., Briggs, D.E.G. (eds.):
Taphonomy: releasing the data locked in the fossil record.
- 337-387, New York (Plenum)
Hudson, J.D. (1982): Pyrite in ammonite-bearing shales from
the Jurassic of England and Germany. - Sedimentology,
29 , 639-667
Schallreuther, R. (1984): Framboidal pyrite in deep-sea sedi-
ments. - Initial Reports of the Deep Sea Drilling Project,
75 , 875-891
Schieber, J. (2002): Sedimentary pyrite: a window into the
microbial past. - Geology, 30 , 531-534
Wilkin, R.T., Barnes, H.L., Brantley, S.L. (1996): The size
distribution of framboidal pyrite in modern sediments: an
indicator of redox conditions. - Geochimica et Cosmo-
chimica Acta, 60 , 3897-3912
Further reading: K067
Basics: Authigenic minerals in carbonate rocks
Silicification of carbonates, authigenic quartz and feldspar
DeMaster, D.J. (1981): The supply and accumulation of silica
in the marine environment. - Geochimica et Cosmochimica
Acta, 45 , 1715-1732
Hesse, R. (1990a): Origin of chert: diagenesis of biogenic
siliceous sediments. - In: McIllreath, I.A., Morrow, D.W.
(eds.): Diagenesis. - Geoscience Canada, Reprint Series,
4 , 227-252
Hesse, R. (1990b): Silica diagenesis: origin of inorganic and
replacement cherts. - In: McIllreath, I.A., Morrow, D.W.
(eds.): Diagenesis. - Geoscience Canada, Reprint Series,
4 , 253-276
Kastner M., Siever, R. (1979): Low temperate feldspars in
sedimentary rocks. - American Journal of Science, 279 ,
435-479
Laschet, C. (1984): On the origin of cherts. - Facies, 10 ,
257-289
Maliva, R., Siever, R. (1988): Mechanisms and controls of
silicification of fossils in limestones. - Journal of Geol-
ogy, 96 , 387-398
Martín Penela, A.J. (1995): Silicification of carbonate clasts
in a marine environment (Upper Miocene, Vera Basin, SE
Spain). - Sedimentary Geology, 97 , 21-32
Molenaar, N., de Jong, A.F.M. (1987): Authigenic quartz and
albite in Devonian limestones: origin and significance. -
Sedimentology, 34 , 623-640
Wilson, R.G.C. (1966): Silica diagenesis in Upper Jurassic
limestones of southern England. - Journal of Sedimen-
tary Petrology, 36 ,1036-1049
Further reading : K064, K091, K092
Sulfates: Evaporites
Aigner, T., Bachmann, G.H. (1989): Dynamic stratigraphy
of an evaporite-to-red bed sequence, Gipskeuper (Trias-
sic), southwest German Basin. - Sedimentary Geology,
62 , 5-25
Balzer, D. (1997): Mikrofazies-Analyse von Ca-Sulfatge-
steinen des Zechstein. - Geologisches Jahrbuch, D, 106 ,
3-99
Handford, C.R., Loucks, R.G., Davies, G.R. (1982): Deposi-
tional and diagenetic spectra of evaporites - a core work-
shop. - SEPM Core Workshop, 3 , 395 pp.
Renault, R.W. (ed., 1989): Sedimentology and diagenesis of
evaporites. - Sedimentary Geology, 64 ,207-
Richter-Bernburg, G. (1985): Zechstein-Anhydrite. Fazies
und Genese. - Geologisches Jahrbuch, A85 , 1-82
Rouchy, J.M., Taberner, C., Peryt, D. (eds., 2001): Sedimen-
tary and diagenetic transitions between carbonates and
evaporites. - Sedimentary Geology, 140 , 1-189
Sarg, J.F. (2001): The sequence stratigraphy, sedimentology
and economic importance of evaporite-carbonate transi-
tions. - Sedimentary Geology, 140 , 9-34
Shearman, D.J. (1991): Evaporite sediments and rocks: the
calcium sulphate and halite facies. - 304 pp., New York
(Van Nostrand)
Search WWH ::




Custom Search