Geology Reference
In-Depth Information
ate conglomerates include (a) storm or swell lags in
shore-face environment (Einsele and Seilacher 1982;
Nemec and Steel 1984; Aigner 1985; Craft and Bridge
1987), (b) lateral accretion lags at the base of tidal chan-
nels (Shinn 1986; Waters et al. 1989), (c) transgressive
lags, originating from a rip-up of underlying older tidal
flat sediments during rises in sea level (Pl. 9/7).
Box 5.9. Significance of carbonate breccias and con-
glomerates.
Paleoenvironmental proxies
Since the formation of many breccia types is restricted
to specific settings (Fig. 5.20), depositional and non-
depositional breccias assist in the paleoenvironmental
interpretation of non-marine and marine carbonates.
Caliche breccias and karst breccias indicate subaerial
exposure, solution-evaporite-collapse breccias may point
to sea-level lowering (Obrador et al. 1992).
Depositional patterns
Breccias can mark underlying sequence boundaries
(e.g. Biddle 1984, Garcia-Mondejar 1990) and offer in-
formation on the geometry of carbonate ramps, e.g. dis-
tal steepening.
Reconstruction of provenance areas
Clast analyses of breccias and microfacies studies of
conglomerates provide excellent data which allow de-
tailed reconstructions of the changing sedimentary in-
put into marine or non-marine basins, the provenance of
the material and the climatic and tectonic controls of the
processes involved (see Pl. 27, Fig. 5.21 and 16.3).
Tectonic events
Breccias can indicate the proximity of faults which
may otherwise not be directly detected (e.g. Bosellini
1989; Garcia-Mondejar 1990).
Economic importance
Reservoir rocks: Fractured carbonate breccias are im-
portant hydrocarbon reservoirs. Of particular interest are
solution breccias (Loucks and Anderson 1985; Miller
1985), debris-flow breccias (Enos 1988) and karst brec-
cias.
Mineralizations: Breccia-hosted karst and collapse
breccias host Mississippi Valley-type lead-zinc deposits
(Klau and Mostler 1983; Bechstädt et al. 1994; Liaghat
et al. 2000).
Building stones: Many polymict carbonate conglom-
erates and breccias are used as building and decoration
stones (Pl. 26/3), e.g. 'Nagelfluh' (an interglacial con-
glomerate), or the socalled 'Untersberg marble' (a Cre-
taceous mass-flow breccia) in Austria.
5.3.3.5 Significance of Carbonate Breccias and
Conglomerates
Fig. 5.20 shows the setting of breccias and conglomer-
ates. Box 5.9 summarizes the significance of breccias
and conglomerates for facies analyses and economic
issues.
Basics: Carbonate breccias and conglomerates
Bathurst, R.G.C. (1959): Diagenesis in Mississippian calci-
lutites and pseudobreccias. - J. Sed. Petrol., 29 , 365-376
Blount, D.N., Moore, C.H. (1969): Depositional and non-
depositional carbonate breccias, Chiantla Quadrangle,
Guatemala. - Geol. Soc. Amer. Bull., 80 , 429-442
Böhm, F., Dommergues, J.L., Meister, C. (1995): Breccias
of the Adnet Formation: indicators of a Mid-Liassic tec-
tonic event in the Northern Calcareous Alps (Salzburg/
Austria). - Geol. Rundschau, 84 , 272-286
Flügel, E., Kraus, S. (1988): The Lower Permian Sexten brec-
cia (Sexten Dolomites) and the Tarvis breccia (Carnic
Alps): Microfacies, depositional environment and paleo-
tectonic implications. - Mem. Soc. Geol. Ital., 34 , 67-90
Füchtbauer, H., Richter, D.K. (1983): Carbonate internal brec-
cias: A source of mass flow at early geosynclinal platform
margins in Greece. - Soc. Econ. Paleont. Min. Spec. Publ.,
33 , 207-215
Füchtbauer, H., Richter, D.K. (1983): Relations between sub-
marine fissures, internal breccias and mass flow during
Triassic and earlier rifting periods. - Geol. Rundschau,
72 , 53-66
Koster, E.H., Steel, R.L. (1984): Sedimentology of gravels
and conglomerates. - Canadian Soc. Petrol. Geol. Mem.,
10 , 441 pp.
Laznicka, P. (1988): Breccias and coarse fragmentites. - Dev.
Econ. Geol., 25 , 832 pp., Amsterdam (Elsevier)
Norton, W.H. (1917): A classification of breccias. - J. Geol.,
25 , 160-194
Richter, D.K., Füchtbauer, H. (1981): Merkmale und Genese
von Breccien und ihre Bedeutung im Mesozoikum von
Hydra (Griechenland). - Z. deutsch. geol. Ges., 132 , 451-
501
Schaad, W. (1995): Die Entstehung von Rauhwacken durch
die Verkarstung von Gips. - Eclogae geol. Helvet., 88 ,
59-90
Stanton, R.J. (1966): The solution brecciation process. - Geol.
Soc. Amer. Bull., 77 , 843-848
Wise, D.U., Dunn, D.E., Engelder, J.T., Geiser, P.A., Hatcher,
R.D., Kish, S.A., Odom, A.L., Schamel, S. (1984): Fault
related rocks: suggestions for terminology. - Geology 12 ,
391-394
Further reading : K072
 
Search WWH ::




Custom Search