Digital Signal Processing Reference
In-Depth Information
From the second section (cascaded with the first), using (4.28) and (4.29),
() =
() +
(
)
yn yn ken
xn
-
1
2
1
2
1
() +
(
) +
(
) +
(
)
=
kxn
-
1
kkxn
-
1
kxn
-
2
1
2
1
2
() ++
(
)
(
) +
(
)
=
xn
k
kk xn
-
1
kxn
-
2
(4.30)
1
1
2
2
and
() =
() +-
(
)
en kyn en
kxn
1
2
2
1
1
() +
(
) +
(
) +-
(
)
=
kkxn
-
1
kxn
-
1
xn
2
2
2
1
1
() ++
(
)
(
) +-
(
)
=
kxn
k
kk xn
-
1
xn
2
(4.31)
2
1
1
2
For a specific section i ,
() =
() +
(
)
yn
y
n ke
n
-
1
(4.32)
i
i
-
1
i
i
-
1
() =
() +
(
)
en
ky n e
n
-
1
(4.33)
i
i
i
-
1
i
-
1
It is instructive to see that (4.30) and (4.31) have the same coefficients but in
reversed order. It can be shown that this property also holds true for a higher-order
structure. In general, for an N th-order FIR lattice system, (4.30) and (4.31) become
N
= Â 0
() =
(
)
yn
axni
-
(4.34)
N
i
i
and
N
= Â 0
() =
(
)
en
a xni
-
(4.35)
N
N
-
i
i
with a 0 =
1. If we take the ZT of (4.34) and (4.35) and find their impulse responses,
N
= Â 0
() =
Yz
az
-
i
(4.36)
N
i
i
N
= Â 0
() =
Ez
a z
-
i
(4.37)
N
N
-
i
i
It is interesting to note that
() =
(
)
Ez zY
-
N
1
z
(4.38)
N
N
Search WWH ::




Custom Search