Biomedical Engineering Reference
In-Depth Information
The extensive mechanistic studies about the empirical
linkers have been an important source for rational linker
design. The structures of many linkers such as flexible and
helical linkers have been studied by X-ray crystallography
and NMR [35,41]. Functions and characteristics are also
investigated through various applications. With the devel-
opment of biotechnology and biomedical research, linkers
will play important roles in constructing desired bioactive
recombinant fusion proteins.
transferrin fusion protein by spacer optimization. Pharm.
Res. 23, 2116-2121.
15. Robinson CR, Sauer RT. (1998) Optimizing the stability
of single-chain proteins by linker length and composition
mutagenesis. Proc. Natl. Acad. Sci. USA 95, 5929-5934.
16. Wriggers W, Chakravarty S, Jennings PA. (2005) Control of
protein functional dynamics by peptide linkers. Biopolymers
80, 736-746.
17. George R, Heringa J. (2002) An analysis of protein domain
linkers: their classification and role in protein folding. Protein
Eng. 15, 871-879.
18. Argos P. (1990) An investigation of oligopeptides linking
domains in protein tertiary structures and possible candidates
for general gene fusion. J. Mol. Biol. 211, 943-958.
19. Eisenberg D. (1984) Three-dimensional structure of membrane
and surface proteins. Annu. Rev. Biochem. 53, 595-623.
20. Aurora R, Creamer T, Srinivasan R, Rose G. (1997) Local
interactions in protein folding: lessons from the alpha-helix.
J. Biol. Chem. 272, 1413-1416.
21. Williamson MP. (1994) The structure and function of proline-
rich regions in proteins. Biochem. J. 297(Pt 2), 249-260.
22. Hagemeyer CE, von Zur Muhlen C, von Elverfeldt D, Peter K.
(2009) Single-chain antibodies as diagnostic tools and thera-
peutic agents. Thromb. Haemost. 101, 1012-1019.
23. Huston J, Levinson D, Mudgett-Hunter M, Tai M, NovotnyJ,
Margolies M, et al. (1988) Protein engineering of antibody
binding sites: recovery of specific activity in an anti-digoxin
single-chain Fv analogue produced in Escherichia coli. Proc.
Natl. Acad. Sci. USA 85, 5879-5883.
24. Holliger P, Prospero T, Winter G. (1993) “Diabodies”: small
bivalent and bispecific antibody fragments. Proc. Natl. Acad.
Sci. USA 90, 6444-6448.
25. Iliades P, Kortt A, Hudson P. (1997) Triabodies: single chain Fv
fragments without a linker form trivalent trimers. FEBS Lett.
409, 437-441.
26. Amet N, Wang W, Shen WC. (2010) Human growth hormone-
transferrin fusion protein for oral delivery in hypophysecto-
mized rats. J. Control. Release 141, 177-182.
27. Xia CQ, Wang J, Shen WC. (2000) Hypoglycemic effect of
insulin-transferrin conjugate in streptozotocin-induced dia-
betic rats. J. Pharmacol. Exp. Ther. 295, 594-600.
28. Hu W, Li F, Yang X, Li Z, Xia H, Li G, et al. (2004) A flexible
peptide linker enhances the immunoreactivity of two copies
HBsAg preS1 (21-47) fusion protein. J. Biotechnol. 107,
83-90.
29. Bergeron LM, Gomez L, Whitehead TA, Clark DS. (2009)
Self-renaturing enzymes: design of an enzyme-chaperone
chimera as a new approach to enzyme stabilization. Biotech-
nol. Bioeng. 102, 1316-1322.
30. Bird R, Hardman K, Jacobson J, Johnson S, Kaufman B, Lee S,
et al. (1988) Single-chain antigen-binding proteins. Science
242, 423-426.
31. Sabourin M, Tuzon C, Fisher T, Zakian V. (2007) A flexible
protein linker improves the function of epitope-tagged proteins
in Saccharomyces cerevisiae. Yeast 24, 39-45.
REFERENCES
1. Yuste R. (2005) Fluorescence microscopy today. Nat. Meth. 2,
902-904.
2. Terpe K. (2003) Overview of tag protein fusions: from molec-
ular and biochemical fundamentals to commercial systems.
Appl. Microbiol. Biotechnol. 60, 523-533.
3. Lu P, Feng MG. (2008) Bifunctional enhancement of a beta-
glucanase-xylanase fusion enzyme by optimization of peptide
linkers. Appl. Microbiol. Biotechnol. 79, 579-587.
4. Schmidt SR. (2009) Fusion-proteins as biopharmaceuticals—
applications and challenges. Curr. Opin. Drug Discov. Dev. 12,
284-295.
5. Kreitman RJ. (2006) Immunotoxins for targeted cancer ther-
apy. AAPS J. 8, E532-E551.
6. PardridgeWM. (2010) Biopharmaceutical drug targeting to the
brain. J. Drug Target. 18, 157-167.
7. Kim B, Zhou J, Martin B, Carlson O, Maudsley S, Greig N,
et al. (2010) Transferrin fusion technology: a novel approach to
prolong biological half-life of insulinotropic peptides. J. Phar-
macol. Exp. Ther. Epub (DOI: 10.1124/jpet.110.166470).
8. Weimer T, Wormsbacher W, Kronthaler U, LangW, Liebing U,
Schulte S. (2008) Prolonged in-vivo half-life of factor VIIa by
fusion to albumin. Thromb. Haemost. 99, 659-667.
9. Dumont JA, Low SC, Peters RT, Bitonti AJ. (2006) Monomeric
Fc fusions: impact on pharmacokinetic and biological activity
of protein therapeutics. BioDrugs 20, 151-160.
10. Schellenberger V, Wang C, Geething N, Spink B, Campbell A,
To W, et al. (2009) A recombinant polypeptide extends the in
vivo half-life of peptides and proteins in a tunable manner. Nat.
Biotechnol. 27, 1186-1190.
11. Zhao H, Yao X, Xue C, Wang Y, Xiong X, Liu Z. (2008)
Increasing the homogeneity, stability and activity of human
serum albumin and interferon-alpha2b fusion protein by linker
engineering. Protein Expr. Purif. 61, 73-77.
12. Amet N, Lee HF, Shen WC. (2009) Insertion of the designed
helical linker led to increased expression of tf-based fusion
proteins. Pharm. Res. 26, 523-528.
13. Bai Y, Ann DK, Shen WC. (2005) Recombinant granulocyte
colony-stimulating factor-transferrin fusion protein as an
oral myelopoietic agent. Proc. Natl. Acad. Sci. USA 102,
7292-7296.
14. Bai Y, Shen WC. (2006) Improving the oral efficacy of
recombinant granulocyte
colony-stimulating factor
and
Search WWH ::




Custom Search