Biomedical Engineering Reference
In-Depth Information
3. Wagner J, Lerner RA, Barbas CF, III. (1995) Efficient aldolase
catalytic antibodies that use the enamine mechanism of natural
enzymes. Science 270, 1797-1780.
4. Barbas CF. III, Heine A, Zhong G, Hoffman T, Gramatikova S,
Bjornested R, et al. (1997) Immune versus natural selection:
antibody aldolases with enzymic rates but broader scope.
Science 278, 2085-2092.
5. Rader C, Sinha SC, PopkovM, Lerner RA, Barbas CF. III. (2003)
Chemically programmed monoclonal antibodies for cancer ther-
apy: Adaptor immunotherapy based on a covalent antibody
catalyst. Proc. Natl. Acad. Sci.USA 100(9), 5396-5400.
6. Doppalapudi VR, Tryder N, Li L, Aja T, Griffith D, Liao F,
et al. (2007) Chemically programmed antibodies: endothelin
receptor targeting CovX-Bodies. Bioorg. Med. Chem. Lett. 17,
501-506.
7. Liu D, Wood L, Wheeler W, Zhao J, Griffith D, Bradshaw C,
et al. (2006) CCR5 Targeting CovX-Bodies. 30th National
Medicinal Chemistry Meeting, June 25-29, University of
Washington, Seattle.
8. RaderC, Turner JM,HeineA, ShabatD, SinhaS,Wilson IA, et al.
(2003) A humanized aldolase antibody for selective chemo-
therapy and adaptor immunotherapy. J. Mol. Biol. 332, 889-899.
9. Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong
WL, et al. (1992) Humanization of an anti-p185HER2 anti-
body for human cancer therapy. Proc. Natl. Acad. Sci. USA 89
(10), 5434-5441.
10. de Wildt RM, Hoet RM, van Venrooij WJ, Tomlinson IM,
Winter G. (1999) Analysis of heavy and light chain pairings
indicates that receptor editing shapes the human antibody
repertoire. J. Mol. Biol. 285(3), 895-901.
11. de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM. (2000)
Antibody arrays for high-throughput screening of antibody-
antigen. Nat. Biotechnol. 18(9), 989-994.
12. Kyte J, Doolittle RF. (1982) A simple method for displaying
the hydropathic character of a protein. J. Mol. Biol. 157(1),
105-132.
13. Rosen CA, Haseltine WA. (2003) Albumin Fusion Proteins for
Prolonged Shelf-Life of Therapeutic Proteins. PCT Int. Appl.
WO 2003059934.
14. Leger R, Thibaudeau K, Robitaille M, Quraishi O, van Wyk P,
Bousquet-Gagnon N, et al. (2004) Identification of CJC-1131-
albumin bioconjugate as a stable and bioactive GLP-1(7-36)
analog. Bioorg. Med. Chem. Lett. 14(17), 4395-4398.
15. Kim B, Zhou J, Martin B, Carlson OD, Maudsley S, Greig NH,
et al. (2010) Transferrin fusion technology: A novel approach
to prolonging biological half-life of insulinotroic peptides.
J. Pharmacol. Exp. Ther. 334(3), 682-692.
16. Sutherland S. (2004) Peptibodies: The new cool technology.
Drug Discov. Today 9(16), 683.
17. Huang H, Bhat A, Woodnutt G, Lappe R. (2010) Targeting the
ANGPT-TIE2 pathway in malignancy. Nat. Rev. Cancer 10(8),
575-585.
18. Huang H, Lai J, Do J, Liu D, Li L, Del Rosario J, et al. (2011)
Specifically targeting angiopoietin-2 inhibits angiogenesis,
Tie2-expressing monocyte infiltration, and tumor growth.
Clin. Cancer Res. 17(5), 1001-1011.
19. Rosen LS, Mendelson DS, Cohen RB, Gordon MS, Goldman
JW, Bear IK, et al. (2010). First-in-Human Dose-Escalation
Safety and PK Trial of a Novel Intravenous Humanized
Monoclonal CovX Body Inhibiting Angiopoietin 2 [Abstract].
J. Clin. Oncol. 28:15s, Abstract 2524.
20. Cheng HM. (2007) Dynamic contrast enhanced magnetic
resonance imaging in oncology drug development. Curr.
Clin. Pharmacol. 2(2), 111-122.
21. Fischer N, Leger O. (2007) Bispecific antibodies: molecules
that enable novel therapeutic strategies. Pathobiology 74,
3-14.
22. Hagemeyer CE, von Zur Muhlen C, von Elverfeldt D,
Peter K. (2009) Single-chain antibodies as diagnostic
tools and therapeutic agents. Thromb. Haemost. 101,
1012-1019.
23. Robinson MK, Hodge KM, Horak E, Sundberg A L, Russeva
M, Shaller CC, et al. (2008) Targeting ErbB2 and ErbB3 with a
bispecific single-chain Fv enhances targeting selectivity
and induces a therapeutic effect in vitro. Br. J. Cancer 99,
1415-1425.
24. Hudson PJ, Kortt AA. (1999) High avidity scFv multimers,
diabodies and triabodies. J. Immunol. Methods 231, 177-189.
25. Kipriyanov SM. (2009) Generation of bispecific and tandem
diabodies. Methods Mol. Biol. 562, 177-193.
26. Bostrom J, Yu S, Kan D, Appleton BA, Lee CV, Billeci K, et al.
(2009) Variants of the antibody herceptin that interact with
HER2 and VEGF at the antigen binding site. Science 323,
1610-1614.
27. Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A,
et al. (2007) Simultaneous targeting of multiple disease medi-
ators by a dual-variable-domain immunoglobulin. Nat.
Biotechnol. 25, 1290-1297.
28. Constantinou A, Epenetos AA, Hreczuk-Hirst D, Jain S, Wright
M, Chester KA, et al. (2009). Site-specific polysialylation of an
antitumor single-chain Fv fragment. Bioconjug. Chem. 20(5),
924-931.
29. Doppalapudi VR, Huang J, Liu D, Jin P, Liu B, Li L, et al.
(2010) Chemical generation of bispecific antibodies. Proc.
Natl. Acad. Sci. USA 107(52), 22611-22616.
30. Carmeliet P. (2005) VEGF as a key mediator of angiogenesis in
cancer. Oncology 69(Suppl. 3), 4-10.
31. Ferrara N, Gerber HP, LeCouter J. (2003) The biology of
VEGF and its receptors. Nat. Med. 9, 669-676.
32. Moon WS, Rhyu KS, Kang MJ, Lee DG, Yu HC, Yeum JH,
et al. (2003) Overexpression of VEGF and angiopoietin 2: a
key to high vascularity of hepatocellular carcinoma? Modern
Pathol. 16, 552-557.
33. Ochiumi T, Tanaka S, Oka S, Hiyama T, Ito M, Kitadai Y, et al.
(2004) Clinical significance of angiopoietin-2 expression at the
deepest invasive tumor site of advanced colorectal carcinoma.
Int. J. Oncol. 24, 539-547.
34. Huang J, Rolzin P, Osothprarop T, Ishino T, Wiese J, Retting K,
et al. (2011) CVX-343 A long acting FGF-21 CovX-Body
demonstrates prolonged antidiabetic efficacy in diabetic mouse
models. 71 st American Diabetes Association Scientific Ses-
sions, June 23-28, San Diego CA.
Search WWH ::




Custom Search