Biomedical Engineering Reference
In-Depth Information
129. Chang JY, Xiao NJ, Zhu M, Zhang J, Hoff E, Russell SJ, et al.
(2010) Leachables from saline-containing IV bags can alter
therapeutic protein properties. Pharm. Res. 27(11), 2402-
2413.
130. Brown LR. (2005) Commercial challenges of protein drug
delivery. Expert Opin. Drug Deliv. 2(1), 29-42.
131. Dumont JA, Low SC, Peters RT, Bitonti AJ. (2006)
Monomeric Fc fusions: impact on pharmacokinetic and bio-
logical activity of protein therapeutics. BioDrugs 20(3), 151-
160.
132. Jezek J, Rides M, Derham B, Moore J, Cerasoli E, Simler R,
et al. (2011) Viscosity of concentrated therapeutic protein
compositions. Adv. Drug Deliv. Rev. 63(13), 1107-1117.
133. Shire SJ. (2009) Formulation and manufacturability of bio-
logics. Curr. Opin. Biotechnol. 20(6), 708-714.
134. Cordes AA, Platt CW, Carpenter JF, Randolph TW. (2012)
Selective domain stabilization as a strategy to reduce fusion
protein aggregation. J. Pharm. Sci. 101(4), 1400-1409.
135. Werner RG. (2004) Economic aspects of commercial manufac-
ture of biopharmaceuticals. J. Biotechnol. 113(1-3), 171-182.
136. Lee GH, Cooney D, Middelberg APJ, Choe WS. (2006) The
economics of inclusion body processing. Bioprocess Biosyst.
Eng. 29(2), 73-90.
137. Ernst S, Garro OA, Winkler S, Venkataraman G, Langer R,
Cooney CL, et al. (1997) Process simulation for recombinant
protein production: cost estimation and sensitivity analysis
for heparinase I expressed in Escherichia coli. Biotechnol.
Bioeng. 53(6), 575-582.
138. Datar RV, Cartwright T, Rosen CG. (1993) Process economics
of animal cell and bacterial fermentations: a case study
analysis of tissue plasminogen activator. Biotechnology
(NY) 11(3), 349-357.
139. Kelley B. (2009) Industrialization of mAb production tech-
nology: the bioprocessing industry at a crossroads. MAbs 1,
443-452.
140. Farid SS. (2007) Process economics of industrial monoclonal
antibody manufacture. J. Chromatogr. B Analyt. Technol.
Biomed. Life Sci 848(1), 8-18.
141. Langer ES. (2009) Trends in capacity utilization for thera-
peutic monoclonal antibody production. MAbs 1(2),
151-156.
142. Novais JL, Titchener-Hooker NJ, Hoare M. (2001) Economic
comparison between conventional and disposables-based
technology for the production of biopharmaceuticals. Bio-
technol. Bioeng. 75(2), 143-153.
143. Varadaraju H, Schneiderman S, Zhang L, Fong H, Menkhaus
TJ. (2011) Process and economic evaluation for monoclonal
antibody purification using a membrane-only process. Bio-
technol. Prog. 27(5), 1297-1305.
144. Gottschalk U. (2008) Bioseparation in antibody manufactur-
ing: the good, the bad and the ugly. Biotechnol. Prog. 24(3),
496-503.
145. Brooks SA. (2006) Protein glycosylation in diverse cell
systems: implications for modification and analysis of recom-
binant proteins. Expert Rev. Proteomics 3(3), 345-359.
146. Werner RG, Kopp K, Schlueter M. (2007) Glycosylation of
therapeutic proteins in different production systems. Acta
Paediatr. Suppl. 96(455), 17-22.
147. Borys MC, Dalal NG, Abu-Absi NR, Khattak SF, Jing Y,
Xing Z, et al. (2010) Effects of culture conditions on N-
glycolylneuraminic acid (Neu5Gc) content of a recombi-
nant fusion protein produced in CHO cells. Biotechnol.
Bioeng. 105(6), 1048-1057.
148. Hooker A, James D. (1998) The glycosylation heterogeneity
of recombinant human IFN-gamma. J. Interferon Cytokine
Res. 18(5), 287-295.
149. Raju TS. (2008) Terminal sugars of Fc glycans influence
antibody effector functions of IgGs. Curr. Opin. Immunol.
20(4), 471-478.
150. Repp R, Kellner C, Muskulus A, Staudinger M, Nodehi
SM, Glorius P, et al. (2011) Combined Fc-protein- and
Fc-glyco-engineeringof scFv-Fcfusionproteinssynergistically
enhances CD16a binding but does not further enhance NK-cell
mediated ADCC. J. Immunol. Methods 373(1-2), 67-78.
151. Fares FA, Suganuma N, Nishimori K, LaPolt PS, Hsueh AJ,
Boime I. (1992) Design of a long-acting follitropin agonist by
fusing the C-terminal sequence of the chorionic gonadotropin
beta subunit to the follitropin beta subunit. Proc. Natl. Acad.
Sci. USA 89(10), 4304-4308.
152. Egrie JC, Browne JK. (2001) Development and characteriza-
tion of novel erythropoiesis stimulating protein (NESP). Br. J.
Cancer 84(Suppl. 1), 3-10.
153. Sola RJ, Griebenow K. (2009) Effects of glycosylation on the
stability of protein pharmaceuticals. J. Pharm. Sci. 98(4),
1223-1245.
154. Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE.
(1999) Engineered glycoforms of an antineuroblastoma IgG1
with optimized antibody-dependent cellular cytotoxic activ-
ity. Nat. Biotechnol. 17(2), 176-180.
155. Hamilton SR, Gerngross TU. (2007) Glycosylation engineer-
ing in yeast: the advent of fully humanized yeast. Curr. Opin.
Biotechnol. 18(5), 387-392.
156. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y,
Rios S, et al. (2006) Humanization of yeast to produce
complex terminally sialylated glycoproteins. Science 313
(5792), 1441-1443.
157. Wildt S, Gerngross TU. (2005) The humanization of N-
glycosylation pathways in yeast. Nat. Rev. Microbiol. 3(2),
119-128.
158. Sharma SK, Pedley RB, Bhatia J, Boxer GM, El-Emir E,
Qureshi U, et al. (2005) Sustained tumor regression of human
colorectal cancer xenografts using a multifunctional manno-
sylated fusion protein in antibody-directed enzyme prodrug
therapy. Clin. Cancer Res. 11(2 Pt 1), 814-825.
159. Schellekens H. (2005) Follow-on biologics: challenges of the
“next generation.” Nephrol. Dial. Transplant. 20(Suppl. 4),
iv31-36.
160. Shanafelt AB. (2005) Medicinally useful proteins-enhancing
the probability of technical success in the clinic. Expert Opin.
Biol. Ther. 5(2), 149-151.
Search WWH ::




Custom Search