Biomedical Engineering Reference
In-Depth Information
through binding to the inhibitory receptor Fc g RIIb. J. Gene
Med. 13(9), 470-477.
65. De Groot AS, Scott DW. (2007) Immunogenicity of protein
therapeutics. Trends Immunol. 28(11), 482-490.
66. Onda M. (2009) Reducing the immunogenicity of protein
therapeutics. Curr. Drug Targets 10(2), 131-139.
67. Brinkmann U, Pai LH, FitzGerald DJ, Pastan I. (1992)
Alteration of a protease-sensitive region of Pseudomonas
exotoxin prolongs its survival in the circulation of mice.
Proc. Natl. Acad. Sci. USA 89(7), 3065-3069.
68. Weldon JE, Xiang L, Chertov O, Margulies I, Kreitman RJ,
FitzGerald DJ, et al. (2009) A protease-resistant immuno-
toxin against CD22 with greatly increased activity against
CLL and diminished animal toxicity. Blood 113(16), 3792-
3800.
69. Gillies SD, Lo K-M, Burger C, Lan Y, Dahl T, Wong W-K.
(2002) Improved circulating half-life and efficacy of an
antibody-interleukin 2 immunocytokine based on reduced
intracellular proteolysis. Clin. Cancer Res. 8(1), 210-216.
70. Tcherniuk SO, Chroboczek J, Balakirev MY. (2005) Con-
struction of tumor-specific toxins using ubiquitin fusion
technique. Mol. Ther. 11(2), 196-204.
71. Reiter Y, Brinkmann U, Webber KO, Jung SH, Lee B, Pastan
I. (1994) Engineering interchain disulfide bonds into con-
served framework regions of Fv fragments: improved bio-
chemical characteristics of recombinant immunotoxins
containing disulfide-stabilized Fv. Protein Eng. 7(5),
697-704.
72. Way JC, Lauder S, Brunkhorst B, Kong S-M, Qi A, Webster
G, et al. (2005) Improvement of Fc-erythropoietin structure
and pharmacokinetics by modification at a disulfide bond.
Protein Eng. Des. Sel. 18(3), 111-118.
73. Liu W, Onda M, Kim C, Xiang L, Weldon JE, Lee B, et al.
(2012) A recombinant immunotoxin engineered for increased
stability by adding a disulfide bond has decreased immuno-
genicity. Protein Eng. Des. Sel. 25(1), 1-6.
74. Zhao HL, Xue C, Wang Y, Sun B, Yao XQ, Liu ZM. (2009)
Elimination of the free sulfhydryl group in the human serum
albumin (HSA) moiety of human interferon-alpha2b and
HSA fusion protein increases its stability against mechanical
and thermal stresses. Eur. J. Pharm. Biopharm. 72(2),
405-411.
75. Won J, Choe M. (2008) Disulfide bond bridged divalent
antibody-toxin, (Fab-PE38fl)2, with the toxin PE38 fused to
the light chain. J. Microbiol. Biotechnol. 18(8), 1475-1481.
76. Chowdhury PS, Vasmatzis G, Beers R, Lee B, Pastan I. (1998)
Improved stability and yield of a Fv-toxin fusion protein by
computer design and protein engineering of the Fv. J. Mol.
Biol. 281(5), 917-928.
77. McDonagh CF, Beam KS, Wu GJS, Chen JH, Chace DF,
Senter PD, et al. (2003) Improved yield and stability of L49-
sFv-beta-lactamase, a single-chain antibody fusion protein
for anticancer prodrug activation, by protein engineering.
Bioconjug. Chem. 14(5), 860-869.
78. Narhi LO, Arakawa T, Aoki K, Wen J, Elliott S, Boone T,
et al. (2001) Asn to Lys mutations at three sites which are
N-glycosylated in the mammalian protein decrease the aggre-
gation of Escherichia coli-derived erythropoietin. Protein
Eng. 14(2), 135-140.
79. Dunn CJ, Goa KL. (2001) Tenecteplase: a review of its
pharmacology and therapeutic efficacy in patients with acute
myocardial infarction. Am. J. Cardiovasc. Drugs 1(1), 51-66.
80. Johnson IS. (1983) Human insulin from recombinant DNA
technology. Science 219(4585), 632-637.
81. Dingermann T. (2008) Recombinant therapeutic proteins: pro-
duction platforms and challenges. Biotechnol. J. 3(1), 90-97.
82. Demain AL, Vaishnav P. (2009) Production of recombinant
proteins by microbes and higher organisms. Biotechnol. Adv.
27(3), 297-306.
83. Rader RA. (2008) Expression systems for process and prod-
uct improvement. BioProc. Intl. 6(Suppl. 4), 4-9.
84. Walsh G. (2010) Biopharmaceutical benchmarks 2010. Nat.
Biotech. 28(9), 917-924.
85. Sheffield WP, McCurdy TR, Bhakta V. (2005) Fusion to
albumin as a means to slow the clearance of small therapeutic
proteins using the Pichia pastoris expression system.
Therapeutic Proteins, pp. 145-154.
86. Lin H, Kim T, Xiong F, Yang X. (2007) Enhancing the
production of Fc fusion protein in fed-batch fermentation
of Pichia pastoris by design of experiments. Biotechnol.
Prog. 23(3), 621-625.
87. Sørensen HP, Mortensen KK. (2005) Advanced genetic strat-
egies for recombinant protein expression in Escherichia coli.
J. Biotechnol. 115(2), 113-128.
88. Kim JY, Kim Y-G, Lee GM. (2012) CHO cells in bio-
technology for production of recombinant proteins: current
state and further potential. Appl. Microbiol. Biotechnol.
93(3), 917-930.
89. Makrides SC. (1996) Strategies for achieving high-level
expression of genes in Escherichia coli. Microbiol. Rev. 60
(3), 512-538.
90. Kamionka M. (2011) Engineering of therapeutic proteins
production in Escherichia coli. Curr. Pharm. Biotechnol.
12(2), 268-274.
91. Jana S, Deb JK. (2005) Strategies for efficient production of
heterologous proteins in Escherichia coli. Appl. Microbiol.
Biotechnol. 67(3), 289-298.
92. Swartz JR. (2001) Advances in Escherichia coli production of
therapeutic proteins. Curr. Opin. Biotechnol. 12(2), 195-201.
93. Panda AK. (2003) Bioprocessing of therapeutic proteins from
the inclusion bodies of Escherichia coli. Adv. Biochem. Eng.
Biotechnol. 85, 43-93.
94. Urieto JO, Liu T, Black JH, Cohen KA, Hall PD, Willingham
MC, et al. (2004) Expression and purification of the recom-
binant diphtheria fusion toxin DT388IL3 for phase I clinical
trials. Protein Expr. Purif. 33(1), 123-133.
95. Woo JH, Liu J-S, Kang SH, Singh R, Park SK, Su Y, et al.
(2008) GMP production and characterization of the bivalent
anti-human T cell immunotoxin, A-dmDT390-bisFv
(UCHT1) for phase I/II clinical trials. Protein Expr. Purif.
58(1), 1-11.
Search WWH ::




Custom Search