Biomedical Engineering Reference
In-Depth Information
Fu sion prot eins will continue to expand the tool box by
allowing almost unlim ited possibi lities to combine targeting
entities with effector modules. The strategies presented in
this part give a broad overview on the state of the art in
protein-ba sed targeting and should insp ire the read er to
design novel therape utic molecu les.
transport across the blood-brain barrier and abeta fibril dis-
aggregation. Bioconjug. Chem. 18(2), 447-455.
17. Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, et al.
(2011) Boosting brain uptake of a therapeutic antibody by
reducing its affinity for a transcytosis target. Sci. Transl. Med. 3
(84), 84ra44.
18. Demeule M, R egina A, Ch e C, Poirier J, Nguyen T, Gabathuler
R, et al. (2008) Identification and design of peptides as a new
drug delivery system for the brain. J. Pharmacol. Exp. Ther.
324(3), 1064-1072.
19. Fioravanti J, Medina-Echeverz J, Ardaiz N, Gomar C, Parra-
Guill en ZP, Prieto J, et al. (2012) The fusion protein of IFN- a
and apolipoprotein A-I crosses the blood-brain barrier by a
saturable transport mechanism. J. Immunol. 188(8), 3988-
3992.
20. Xiang L, Zhou R, Fu A, Xu X, Huang Y, Hu C. (2011) Targeted
delivery of large fusion protein into hippocampal neurons by
systemic administration. J. Drug Target. 19(8), 632-636.
21. Fu A, Wang Y, Zhan L, Zhou R. (2012) Targeted delivery of
proteins into the central nervous system mediated by rabies
virus glycoprotein-derived peptide. Pharm. Res. Available
at http://www.ncbi.nlm.nih.gov/pubmed/22231987. Retrieved
2012 February 29.
22. Toivonen JM, Olivan S, Osta R. (2010) Tetanus toxin C-
fragment: the courier and the cure? Toxins (Basel) 2(11),
2622-2644.
23. Li J, Chian R-J, Ay I, Kashi BB, Celia SA, Tamrazian E, et al.
(2009) Insect GDNF: TTC fusion protein improves delivery of
GDNF to mouse CNS. Biochem. Biophys. Res. Commun.
390(3), 947-951.
24. Ciriza J, Moreno-Igoa M, Calvo AC, Yague G, Palacio J,
Miana-Mena FJ, et al. (2008) A genetic fusion GDNF-C
fragment of tetanus toxin prolongs survival in a symptomatic
mouse ALS model. Restor. Neurol. Neurosci. 26(6),
459-465.
25. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. (1999) In
vivo protein transduction: delivery of a biologically active
protein into the mouse. Science 285(5433), 1569-1572.
26. Kilic E, Kilic U, Hermann DM. (2005) TAT-GDNF in neuro-
degeneration and ischemic stroke. CNS Drug Rev. 11(4),
369-378.
27. Wu J, Nantz MH, Zern MA. (2002) Targeting hepatocytes for
drug and gene delivery: emerging novel approaches and appli-
cations. Front. Biosci. 7, d717-d725.
28. Du S-L, Pan H, Lu W-Y, Wang J, Wu J, Wang J-Y. (2007)
Cyclic Arg-Gly-Asp peptide-labeled liposomes for targeting
drug therapy of hepatic fibrosis in rats. J. Pharmacol. Exp.
Ther. 322(2), 560-568.
29. Bansal R, Prakash J, de Ruijter M, Beljaars L, Poelstra K.
(2011) Peptide-modified albumin carrier explored as a novel
strategy for a cell-specific delivery of interferon gamma to treat
liver fibrosis. Mol. Pharm. 8(5), 1899-1909.
30. Fioravanti J, Gonzalez I, Medina-Echeverz J, Larrea E, Ardaiz
N, Gonzalez-Aseguinolaza G, et al. (2011) Anchoring inter-
feron alpha to apolipoprotein A-I reduces hematological tox-
icity while
REFER ENCES
1. Allgayer H, Fulda S. (2008) An introduction to molecular
targeted therapy of cancer. Adv. Med. Sci. 53(2), 130-138.
2. Weidle UH, Maisel D, Klostermann S, Schiller C, Weiss EH.
(2011) Intracellular proteins displayed on the surface of tumor
cells as targets for therapeutic intervention with antibody-
related agents. Cancer Genomics Proteomics . 8(2), 49-63.
3. Sharifi J, Khawli LA, Hu P, King S, Epstein AL. (2001)
Characterization of a phage display-derived human monoclo-
nal antibody (NHS76) counterpart to chimeric TNT-1 directed
against necrotic regions of solid tumors. Hybrid. Hybridomics
20(5-6), 305-312.
4. Yim KL, Cunningham D. (2011) Targeted drug therapies and
cancer. Recent Results Cancer Res. 185, 159-171.
5. Hung M-C, Link W. (2011) Protein localization in disease and
therapy. J. Cell. Sci. 124(Pt 20), 3381-3392.
6. Heino J, K apyl a J. (2009) Cellular receptors of extracellular
matrix molecules. Curr. Pharm. Des. 15(12), 1309-1317.
7. Gebauer M, Skerra A. (2009) Engineered protein scaffolds as
next-generation antibody
therapeutics. Curr. Opin. Chem.
Biol. 13(3), 245-255.
8. Brightman MW. (1977) Morphology of blood-brain interfaces.
Exp. Eye Res. 25(Suppl), 1-25.
9. Pardridge WM. (1986) Receptor-mediated peptide transport
through the blood-brain barrier. Endocr. Rev. 7(3), 314-330.
10. Shin SU, Friden P, Moran M, Olson T, Kang YS, Pardridge
WM, et al. (1995) Transferrin-antibody fusion proteins are
effective in brain targeting. Proc. Natl. Acad. Sci. USA 92(7),
2820-2824.
11. Park E, Starzyk RM, McGrath JP, Lee T, George J, Schutz AJ,
et al. (1998) Production and characterization of fusion proteins
containing transferrin and nerve growth factor. J. Drug. Target.
6(1), 53-64.
12. Ji B, Maeda J, Higuchi M, Inoue K, Akita H, Harashima H,
et al. (2006) Pharmacokinetics and brain uptake of lactoferrin
in rats. Life Sci. 78(8), 851-855.
13. Karkan D, Pfeifer C, Vitalis TZ, Arthur G, Ujiie M, Chen Q,
et al. (2008) A unique carrier for delivery of therapeutic com-
pounds beyond the blood-brain barrier. PLoS ONE 3(6), e2469.
14. Pardridge WM. (1997) Drug delivery to the brain. J. Cereb.
Blood Flow Metab. 17(7), 713-731.
15. Pardridge WM. (2008) Re-engineering biopharmaceuticals for
delivery to brain with molecular Trojan horses. Bioconjug.
Chem. 19(7), 1327-1338.
16. Boado RJ, Zhang Y, Zhang Y, Xia C-F, Pardridge WM. (2007)
Fusion antibody for Alzheimer's disease with bidirectional
enhancing
immunostimulatory
properties.
Search WWH ::




Custom Search