Biomedical Engineering Reference
In-Depth Information
137. Stein R, Basu A, Chen S, Shih LB, Goldenberg DM. (1993)
Specificity and properties of MAb RS7-3G11 and the antigen
defined by this pancarcinoma monoclonal antibody. Int. J.
Cancer 55, 938-946.
138. Qu Z, Griffiths GL, Wegener WA, Chang CH, Govindan SV,
Horak ID, et al. (2005) Development of humanized antibodies
as cancer therapeutics. Methods 36, 84-95.
139. Arndt M, Mavratzas A, DiRosa ML, Kontermann R, Rybak
SM, Shogen K, et al. (2010) Onconase 1 -based immunoR-
Nases. Proceedings of the 8th RNase Congress; 2010 October
20-22; Naples, Italy. 24.
140. Nishimura S, Nomura M, (1959) Ribonuclease of Bacillus
subtilis. J. Biochem. (Tokyo) 46, 161-167.
141. Bycroft M, Ludvigsen S, Fersht AR, Poulsen FM. (1991)
Determination of the three-dimensional solution structure of
barnase using nuclear magnetic resonance spectroscopy.
Biochemistry 130, 8697-8701.
142. Mart ınez JC, el Harrous M, Filimonov VV, Mateo PL, Fersht
AR. (1994) A calorimetric study of the thermal stability of
barnase and its interaction with 3 0 GMP. Biochemistry 33,
3919-3926.
143. Martin C, Richard V, SalemM, Hartley R, Mauguen Y. (1999)
Refinement and structural analysis of barnase at 1.5 A reso-
lution. Acta Crystallogr. D Biol. Crystallogr. 55, 386-398.
144. Hartley RW. (1997) Barnase and Barstar In: D'Alessio G,
Riordan JF. (Eds.), Ribonucleases: Structures and Functions.
Academic Press, San Diego, CA, pp. 51-100.
145. Hartley RW. (2001) Barnase-barstar interaction. Methods
Enzymol. 341, 599-611.
146. Deyev SM, Waibel R, Lebedenko EN, Schubiger AP,
Pluckthun A. (2003) Design of multivalent complexes using
the barnase barstar module. Nat. Biotechnol. 21, 1486-1492.
147. Eigenbrot C, Randal M, Presta L, Carter P. Kossiakoff AA.
(1993) X-ray crystal structures of the antigen-binding
domains from three variants of humanized antip185HER2
antibody 4D5 and comparison with molecular modeling.
J. Mol. Biol. 229, 969-995.
148. Deyev SM, Yazynin SA, Kuznetsov DA, Jukovich M, Hartley
RW. (1998) Ribonuclease-charged vector for facile direct
cloning with positive selection. Mol. Gen. 259, 379-382.
149. Prior TI, Kunwar S, Pastan I. (1996) Studies on the activity of
barnase toxins in vitro and in vivo. Bioconjug. Chem. 723-29.
150. Glinka EM, Edelweiss EF, Sapozhnikov AM, Deyev SM.
(2006) A new vector for controllable expression of an anti-
HER2/neu mini-antibody-barnase fusion protein in HEK
293T cells. Gene 366, 97-103.
151. Martsev SP, Tsybovsky YI, Stremovskiy OA, Odintsov SG,
Balandin TG, Arosio P, et al. (2004) Fusion of the antiferritin
antibody VL domain to barnase results in enhanced solubility
and altered pH stability. Protein Eng. Des. Sel. 17, 85-93.
152. Edelweiss E, Balandin TG, Ivanova JL, Lutsenko GV,
Leonova OG, Popenko VI, et al. (2008) Barnase as a new
therapeutic agent triggering apoptosis in human cancer cells.
PLoS ONE 3, e2434.
153. Balandin TG, Edelweiss E, Andronova NV, Treshalina EM,
Sapozhnikov AM, Deyev SM. (2009) Antitumor activity and
toxicity of anti-HER2 immunoRNase scFv 4D5-dibarnase in
mice bearing human breast cancer xenografts. Invest. New
Drugs 29, 22-32.
154. Yokota T, Milenic DE, Whitlow M, Schlom J. (1992)
Rapid tumor penetration of a single-chain Fv and compar-
ison with other immunoglobulin forms. Cancer Res. 52,
3402-3408.
155. Balandin TG, Edelweiss E, Andronowa NV, Treshalina EM,
Sapozhnikov AM, Deyev SM. (2011) Antitumor activity and
toxicity of anti-HER2 immunoRNase scFv 4D5-dibarnase in
mice bearing human breast cancer xenografts. Invest. New
Drugs 29, 22-32.
156. Colcher D, Bird R, Roselli M, Hardman KD, Johnson S, Pope
S, et al. (1990) In vivo tumor targeting of a recombinant
single-chain antigen-binding protein. J. Natl. Cancer Inst. 82,
1191-1197.
157. Milenic DE, Yokota T, Filpula DR, Finkelman MA, Dodd
SW, Wood JF, et al. (1991) Construction, binding properties,
metabolism, and tumor targeting of a single-chain Fv derived
from the pancarcinoma monoclonal antibody CC49. Cancer
Res. 51, 6363-6371.
158. Adams GP, McCartney JE, Tai MS, Oppermann H, Huston JS,
Stafford WF., 3rd, et al. (1993) Highly specific in vivo tumor
targeting by monovalent and divalent forms of 741F8 anti-c-
erbB-2 single-chain Fv. Cancer Res. 53, 4026-4034.
159. Adams GP. (1998) Improving the tumor specificity and
retention of antibody-based molecules. In Vivo 12, 11-21.
160. Colcher D, Pavlinkova G, Beresford G, Booth BJ, Choudhury
A, Batra SK. (1998) Pharmacokinetics and biodistribution
of genetically-engineer antibodies. Q. J. Nucl. Med. 42,
225-241.
161. Nielsen UB, Adams GP, Weiner LM, Marks JD. (2000)
Targeting of bivalent anti-ErbB2 diabody antibody fragments
to tumor cells is independent of the intrinsic antibody affinity.
Cancer Res. 60, 6434-6440.
162. Todorovska A, Roovers RC, Dolezal O, Kortt AA, Hoogen-
boom HR, Hudson PJ. (2001) Design and application of
diabodies, triabodies and tetrabodies for cancer targeting.
J. Immunol. Methods 248, 47-66.
163. Hudson PJ, Souriau C. (2003) Engineered antibodies. Nat.
Med. 9, 129-134.
164. Hofsteenge J. (1997) Ribonuclease Inhibitor. In: D'Alessio G,
Riordan JF. (Eds.), Ribonucleases: Structures and Functions.
Academic Press, San Diego, CA, pp. 621-658.
165. Shapiro R. (2001) Cytoplasmic ribonuclease inhibitor. Meth-
ods Enzymol. 341, 611-628.
166. Dickson KA, Haigis MC, Raines RT. (2005) Ribonuclease
inhibitor: structure and function. Prog. Nucleic Acid Res. Mol.
Biol. 80, 349-374.
167. Erickson HA, Jund MD, Pennell CA. (2006) Cytotoxicity of
human RNase-based immunotoxins requires cytosolic access
and resistance to ribonuclease inhibition. Protein Eng. Des.
Sel. 19, 37-45.
168. Rybak SM, Newton DL, Mikulski SM, Viera A, Youle RJ.
(1993) Cytotoxic Onconase 1 and ribonuclease A chimeras:
comparison and in vitro characterisation. Drug Deliv. 1, 3-10.
Search WWH ::




Custom Search