Biomedical Engineering Reference
In-Depth Information
human pancreatic ribonuclease with selective cytotoxicity
toward malignant cells. Proc. Natl. Acad. Sci. U S A 96,
7768-7773.
109. Di Gaetano S, D'alessio G, Piccoli. R. (2001) Second gener-
ation antitumor human RNase: significance of its structural
and functional features for the mechanism of antitumor
action. Biochem. J. 358, 241-247.
110. De Lorenzo C, Tedesco A, Terrazzano G, Cozzolino R,
Laccetti P, Piccoli R, et al. (2004) A human, compact, fully
functional anti-ErbB2 antibody as a novel antitumor agent.
Br. J. Cancer 91, 1200-1204.
111. Borriello M, Laccetti P, Terrazzano G, D'Alessio G, De
Lorenzo C. (2011) A novel fully human antitumor immu-
noRNase targeting ErbB2-positive tumors. Br. J. Cancer 104,
1716-1723.
112. De Lorenzo C, Troise F, Cafaro V, D'Alessio G. (2007)
Combinatorial experimental protocols for Erbicin-derived
immunoagents and herceptin. Br. J. Cancer 97, 1354-1360.
113. Gelardi T, Damiano V, Rosa R, Bianco R, Cozzolino R,
Tortora G, et al. (2010) Two novel human anti-ErbB2 immu-
noagents are active on trastuzumab-resistant tumors. Br. J.
Cancer 102, 513-519.
114. De Lorenzo C, Fedele C, Malara AE, Troise F, Riccio G,
Laccetti P, et al. Novel human anti-ErbB2 immunoagents.
Proceedings of the 8th RNase Congress; 2010 October 20-22;
Naples, Italy. 25.
115. Braschoss S, Hirsch B, Dubel S, Stein H, Durkop H. (2007)
New anti-CD30 human pancreatic ribonuclease-based immu-
notoxin reveals strong and specific cytotoxicity in vivo. Leuk.
Lymphoma 48, 1179-1186.
116. Menzel C, Schirrmann T, Konthur Z, Jostock T, Dubel S.
(2008) Human antibody RNase fusion protein targeting
CD30 þ lymphomas. Blood 111, 3830-3837.
117. Chen S-I, Le S-Y, Newton DL, Maizel JV, Rybak SM. (2000)
A gender specific mRNA encoding a cytotoxic ribonuclease
contains a 3 0 UTR of unusual length and structure. Nucleic
Acids Res. 28, 2375-2382.
118. Singh UP, Ardelt W, Saxena SK, Holloway DE, Vidunas E,
Lee H-S, et al. (2007) Enzymatic and structural character-
isation of amphinase, a novel cytotoxic ribonuclease from
Rana pipiens oocytes. J. Mol. Biol. 371, 93-111.
119. Mosimann SC, Ardelt W, James MNG. (1994) Refined 1.7 Ǻ
X-ray crystallographic structure of P-30 protein, an amphib-
ian ribonuclease with anti-tumor activity. J. Mol. Biol. 236,
1141-1153.
120. Boix E, Wu Y-N, Vasandani VM, Saxena SK, Ardelt W,
Ladner J, et al. (1996) Role of the N-terminus in RNase A
homologues: differences in catalytic activity, ribonuclease
inhibitor interaction and cytotoxicity. J. Mol. Biol. 257, 992-
1007.
121. Notomista E, Cafaro V, Fusiello R, Bracale A, D'Alessio G,
Di Donato A. (1999) Effective expression and purification of
recombinant Onconase 1 , an antitumor protein. FEBS Lett.
463, 211-215.
122. Liao YD, Wang SC, Leu YJ, Wang CF, Chang ST, Hong YT,
et al. (2003) The structural integrity exerted by N-terminal
pyroglutamate is crucial for the cytotoxicity of frog ribonu-
clease from Rana pipiens. Nucleic Acids Res. 31, 5247-5255.
123. Hursey M, Newton DL, Hansen HJ, Ruby D, Goldenberg
DM, Rybak SM. (2002) Specifically targeting the CD22
receptor of human B-cell lymphomas with RNA damaging
agents: a new generation of therapeutics. Leuk. Lymphoma
43, 953-959.
124. Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M.
(1999) MUC1 and cancer. Biochim. Biophys. Acta 1455,
301-313.
125. Brossart P, Schneider A, Dill P, Schammann T, Grunebach F,
Wirths S, et al. (2001) The epithelial tumor antigen MUC1 is
expressed in hematological malignancies and is recognized
by MUC1-specific cytotoxic T-lymphocytes. Cancer Res. 61,
6846-6850.
126. Beatson RE, Taylor-Papadimitriou J, Burchell JM. (2010)
MUC1 immunotherapy. Immunotherapy 2, 305-327.
127. Krauss J, Arndt MA, Zhu Z, Newton DL, Vu BK, Choudhry
V, et al. (2004) Impact of antibody framework residue VH-71
on the stability of a humanised anti-MUC1 scFv and derived
immunoenzyme. Br. J. Cancer 90, 1863-1870.
128. Krauss J, Arndt MA, Martin AC, Liu H, Rybak SM. (2003)
Specificity grafting of human antibody frameworks selected
from a phage display library: generation of a highly stable
humanized anti-CD22 single-chain Fv fragment. Protein
Eng. 16, 753-759.
129. Krauss J, Arndt MA, Vu BK, Newton DL, Seeber S, Rybak
SM. (2005) Efficient killing of CD22 þ tumor cells by a
humanized diabody-RNase fusion protein. Biochem. Biophys.
Res. Commun. 331, 595-602.
130. Holliger P, Prospero T, Winter G. (1993) “Diabodies”: small
bivalent and bispecific antibody fragments. Proc. Natl. Acad.
Sci. U S A 90, 6444-6448.
131. Stein R, Qu Z, Cardillo TM, Chen S, Rosario A, Horak ID,
et al. (2004) Antiproliferative activity of a humanized anti-
CD74 monoclonal antibody, hLL1, on B-cell malignancies.
Blood 104, 3705-3711.
132. Burton JD, Ely S, Reddy PK, Stein R, Gold DV, Cardillo TM,
et al. (2004) CD74 is expressed by multiple myeloma
and is a promising target for therapy. Clin. Cancer Res.
10, 6606-6611.
133. Chang CH, Sapra P, Vanama SS, Hansen HJ, Horak ID,
Goldenberg DM. (2005) Effective therapy of human lym-
phoma xenografts with a novel recombinant ribonuclease-
/anti-CD74 humanized IgG4 antibody immunotoxin. Blood
106, 4308-4314.
134. Aalberse RC, Schuurman J. (2002) IgG4 breaking the rules.
Immunology 105, 9-19.
135. Chang CH, Gupta P, Michel R, Loo M, Wang Y, Cardillo TM,
et al. (2010) Ranpirnase (frog RNase) targeted with a human-
ized, internalizing, anti-Trop-2 antibody has potent cyto-
toxicity against diverse epithelial cancer cells. Mol. Cancer
Ther. 9, 2276-2286.
136. Ripani E, Sacchetti A, Corda D, Alberti S. (1998) Human
Trop-2 is a tumor-associated calcium signal transducer. Int. J.
Cancer 76, 671-676.
Search WWH ::




Custom Search