Biomedical Engineering Reference
In-Depth Information
56. Herrero-Vanrell R, Rincon AC, Alonso M, Reboto V, Molina-
Martinez IT, Rodriguez-Cabello JC. (2005) Self-assembled
particles of an elastin-like polymer as vehicles for controlled
drug release. J. Control. Release. 102, 113-122.
57. Na K, Jung J, Lee J, Hyun J. (2010) Thermoresponsive pore
structure of biopolymer microspheres for a smart drug carrier.
Langmuir 26, 11165-11169.
58. Dash BC, Mahor S, Carroll O, Mathew A, Wang W, Wood-
house KA, et al. (2011) Tunable elastin-like polypeptide
hollow sphere as a high payload and controlled delivery
gene depot. J. Control. Release 152, 382-392.
59. Kim W, Chaikof EL. (2010) Recombinant elastin-mimetic
biomaterials: emerging applications in medicine. Adv. Drug
Deliv. Rev. 62, 1468-1478.
60. Osborne JL, Farmer R, Woodhouse KA. (2008) Self-
assembled elastin-like polypeptide particles. Acta Biomater.
4, 49-57.
61. MacKay JA, Chen M, McDaniel JR, Liu W, Simnick AJ,
Chilkoti A. (2009) Self-assembling chimeric polypeptide-
doxorubicin conjugate nanoparticles that abolish tumours
after a single injection. Nat. Mater. 8, 993-999.
62. Fujita Y, Mie M, Kobatake E. (2009) Construction of nano-
scale protein particle using temperature-sensitive elastin-like
peptide and polyaspartic acid chain. Biomaterials 30, 3450-
3457.
63. Wu YQ, MacKay JA, McDaniel JR, Chilkoti A, Clark RL.
(2009) Fabrication of elastin-like polypeptide nanoparticles
for drug delivery by electrospraying. Biomacromolecules 10,
19-24.
64. Simnick AJ, Valencia CA, Liu R, Chilkoti A. (2010) Morph-
ing low-affinity ligands into high-avidity nanoparticles by
thermally triggered self-assembly of a genetically encoded
polymer. ACS Nano 4, 2217-2227.
65. Silva LC, Ortigosa LC, Benard G. (2010) Anti-TNF-alpha
agents in the treatment of immune-mediated inflammatory
diseases: mechanisms of action and pitfalls. Immunotherapy
2, 817-833.
66. Shamji MF, Chen J, Friedman AH, Richardson WJ, Chilkoti
A, Setton LA. (2008) Synthesis and characterization of a
thermally-responsive tumor necrosis factor antagonist. J.
Control. Release 129, 179-186.
67. Shamji MF, Jing L, Chen J, Hwang P, Ghodsizadeh O,
Friedman AH, et al. (2008) Treatment of neuroinflammation
by soluble tumor necrosis factor receptor type II fused to a
thermally responsive carrier. J. Neurosurg. Spine 9, 221-
228.
68. Shamji MF, Whitlatch L, Friedman AH, Richardson WJ,
Chilkoti A, Setton LA. (2008) An injectable and in situ-
gelling biopolymer for sustained drug release following
perineural administration. Spine (Phila Pa 1976) 33, 748-
754.
69. Bidwell GL, Davis AN, Raucher D. (2009) Targeting a c-Myc
inhibitory polypeptide to specific intracellular compartments
using cell penetrating peptides. J. Control. Release 135, 2-10.
70. Massodi I, Moktan S, Rawat A, Bidwell GL, III, Raucher D.
(2010) Inhibition of ovarian cancer cell proliferation by a cell
cycle inhibitory peptide fused to a thermally responsive
polypeptide carrier. Int. J. Cancer 126, 533-544.
71. Massodi I, Bidwell GL, III Davis A, Tausend A, Credit K,
Flessner M, et al. (2009) Inhibition of ovarian cancer cell
metastasis by a fusion polypeptide Tat-ELP. Clin. Exp.
Metastasis 26, 251-260.
72. Massodi I, Thomas E, Raucher D. (2009) Application of
thermally responsive elastin-like polypeptide fused to a lac-
toferrin-derived peptide for treatment of pancreatic cancer.
Molecules 14, 1999-2015.
73. Moktan S, Ryppa C, Kratz F, Raucher D. (2012) A thermally
responsive biopolymer conjugated to an acid-sensitive deriv-
ative of Paclitaxel stabilizes microtubules, arrests cell cycle,
and induces apoptosis. Invest. New. Drugs 30, 236-248.
74. Liu W, MacKay JA, Dreher MR, Chen M, McDaniel JR,
Simnick AJ, et al. (2010) Injectable intratumoral depot of
thermally responsive polypeptide-radionuclide conjugates
delays tumor progression in a mouse model. J. Control.
Release 144, 2-9.
75. Rodriguez-Cabello JC, Prieto S, Reguera J, Arias FJ, Ribeiro
A. (2007) Biofunctional design of elastin-like polymers for
advanced applications in nanobiotechnology. J. Biomater.
Sci. Polym. Ed. 18, 269-286.
76. Di Zio K, Tirrell DA. (2003) Mechanical properties of
artificial protein matrices engineered for control of cell
and tissue behavior. Macromolecules 36, 1553-1558.
77. Nagarsekar A, Crissman J, Crissman M, Ferrari F, Cappello J,
Ghandehari H. (2003) Genetic engineering of stimuli-sensi-
tive silkelastin-like protein block copolymers. Biomacromo-
lecules 4, 602-607.
78. Martin DC, Jiang T, Buchko CJ. (1997) In: McGrath KP,
Kaplan DL (Eds), Protein-Based Materials. Birkhauser, Bos-
ton, pp. 339-370.
79. Cappello J, McGrath KP. (1994) In: Kaplan DL, Adams WW,
Farmer B, Viney C (Eds), Silk Polymers: Materials Science
and Biotechnology. ACS Symposium Series, American
Chemical Society, Washington, pp. 311- 327.
80. Qiu W, Teng W, Cappello J, Wu X. (2009) Wet-spinning of
recombinant silk-elastin-like protein polymer fibers with high
tensile strength and high deformability. Biomacromolecules
10, 602-608.
81. Reguera J, Fahmi A, Moriarty P, Girotti A, Rodriguez-
Cabello JC. (2004) Nanopore formation by self-assembly
of the model genetically engineered elastin-like polymer
[(VPGVG)(2)(VPGEG)(VPGVG)(2)](15). J. Am. Chem.
Soc. 126, 13212-13213.
82. Boehm R. (2007) Bioproduction of therapeutic proteins in the
21st century and the role of plants and plant cells as produc-
tion platforms. In: Lal S (Ed), Biology of Emerging Viruses:
Sars, Avian and Human Influenza, Metapneumovirus, Nipah,
West Nile, and Ross River Virus. Blackwell Publishing,
Uxford, UK, pp. 121-134.
83. Sparrow PAC, Irwin JA, Dale PJ, Twyman RM, Ma JKC.
(2007) Pharma-Planta: road testing the developing regulatory
guidelines for plant-made pharmaceuticals. Transgenic Res.
16, 147-161.
Search WWH ::




Custom Search