Biomedical Engineering Reference
In-Depth Information
206. Kaufmann EABE, Ducheyne P, Shapiro IM. Evaluation of osteoblast response to porous bioactive glass
(45S5) substrates by RT-PCR analysis. Tissue Eng 2004; 6: 19-28.
207. Ramay HRR, Zhang M. Biphasic calcium phosphate nanocomposite scaffolds for load bearing bone
tissue engineering. Biomaterials 2004; 25: 5171-5180.
208. Yan H, Zhang K, Blanford CF, Fancis LF, Stein A. In vitro hydroxylcarbonate apatite mineralization of
CaO-SiO 2 sol-gel glasses with three-dimensionally ordered macroporous structure. Chem Mater 2001;
13: 1374-1382.
209. Gun J, Lev O, Regev O, Pevzner S, Kucernak A. Sol-gel formation of reticular methyl-silicate materials
by hydrogen peroxide decomposition. J Sol-Gel Sci Tech 1998; 13: 189-193.
210. Sato Y, Nakanish K, Hirao K, Jinnai H, Shibayama M, Melnichenko YB, Wignall GD. Formation of
ordered macropore and templated nanopores in silica sol-gel system incorporated with EO-PO-EO tri-
block copolymer. Colloid Surface 20 01; 187-188: 117-122.
211. Bose S, Darsell J, Kintner M, Hosick H, Bandyopadhyay A. Pores size and pore volume effects on alu-
mina and TCP ceramic scaffolds. Mater Sci Eng C 2003; 23C: 479-486.
212. Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A. Porous calcium aluminate ceramics for bone-graft
applications. Mater Res Soc 2002; 17: 3042-3049.
213. Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A. Development of controlled porosity polymer-ceramic
composite scaffolds via fused deposition modelling. Mater Sci Eng C 2003; 23C: 611-620.
214. Lee GH, Barlow JW, Fox WC, Aufdermorte TB. Biocompatibility of SLS-formed calcium phosphate
implants. Proceedings of Solid Freeform Fabrication Symposium , Austin, TX, 1996, pp. 15-22.
215. Lu L, Mikos AG. The importance of new processing techniques in tissue engineering. MRS Bull 1996;
11: 28 -32.
216. Thomas RC, Shung AK, Yaszemski MJ. Polymer scaffold processing. In: Principles of Tissue Engi-
neering , 2nd Edition, Lanza RP, Langer R, Vacanti J (eds.), Academic Press, San Diego, CA, 2000,
pp. 251-262.
217. Widmer MS, Mikos AG. Fabrication of biodegradable polymer scaffolds for tissue engineering. In:
Frontier in Tissue Engineering , Patrick Jr CW, Mikos AG, Mcintire LV (eds.), Elsevier Science, New
York, 1998, pp. 107-120.
218. Atala A, Lanza RP (ed.), Methods of Tissue Engineering , Academic Press, San Diego, CA, 2002, pp.
681-740.
219. Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defi ned interconnected spherical pore
network. Tissue Eng 2001; 7: 23-33.
220. Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert Rev
Med Devices 2005; 2: 303-317.
221. Gough JE, Arumugam M, Blaker J, Boccaccini AR. Bioglass coated poly(dl-lactide) foams for tissue
engineering scaffolds. Materialwissenschaft und Werkstofftechnik 2003; 34: 654-661.
222. Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jerome R. Development and in vitro char-
acterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and
Bioglass for tissue engineering applications. Biomaterials 2002; 23: 3871-3878.
223. Kim HW, Knowles JC, Kim HE. Hydroxyapatite porous scaffold engineered with biological polymer
hybrid coating for antibiotic vancomycin release. J Mater Sci Mater Med 2005; 16: 189-195.
224. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000; 21: 667-681.
225. Siperko LM, Jacquet R, Landis WJ. Modifi ed aminosilane substrates to evaluate osteoblast attachment,
growth, and gene expression in vitro . J Biomed Mater Res 2006; 78A: 808-822.
226. Curran JM, Chen R, Hunt JA. Controlling the phenotype and function of mesenchymal stem cells
in vitro by adhesion to silane-modifi ed clean glass surfaces. Biomaterials 2005; 26: 7057-7067.
227. Glass-Brudzinski J, Perizzolo D, Brunette DM. Effects of substratum surface topography on the orga-
nization of cells and collagen fi bers in collagen gel cultures. J Biomed Mater Res 2002; 61: 608-618.
228. Curran JM, Chen R, Hunt JA. The guidance of human mesenchymal stem cell differentiation in vitro by
controlled modifi cations to the cell substrate. Biomaterials 2006; 27: 4783-4793.
229. Guo X, Zheng Q, et al. Bone regeneration with active angiogenesis by basic fi broblast growth factor
gene transfected mesenchymal stem cells seeded on porous β -TCP cera m ic sca f folds. Biomed Mater
2006; 1: 93-99.
230. Singhatanadgit W, Salih V, Olsen I. Up-regulation of bone morphogenetic protein receptor IB by growth
factors enhances BMP-2-induced human bone cell functions. J Cell Physiol 2006; 209: 912-922.
231. Kuo AC, et al. Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate
articular cartilage repair. Osteoarthr Cartilage 2006; 14: 1126-1135.
Search WWH ::




Custom Search