Biomedical Engineering Reference
In-Depth Information
126. Shastri V, Marini P, Padera R, Kirchain S, Tarcha P, Langer R. Osteocompatibility of photopolymeriz-
able anhydride networks. Mater Res Soc Symp Proc 1999; 530: 93-98.
127. Solheim E, Sudmann B, Bang G, Sudmann E. Biocompatibility and effect on osteogenesis of poly(ortho
ester) compared to poly(d,l-lactic acid). J Biomed Mater Res 2000; 49: 257-263.
128. Andriano KP, Gurny R, Heller J. Synthesis of synthetic polymers: Poly(ortho esters). In: Methods of
Tissue Engineering , Atala A, Lanza RP (eds.), Academic Press, San Diego, CA, 2002, pp. 619-627.
129. Allcock HR. Syntheses of synthetic polymers: Polyphosphazenes. In: Methods of Tissue Engineering ,
Atala A, Lanza RP (eds.), Academic Press, San Diego, CA, 2002, pp. 597-608.
130. Laurencin CT, ElAmin SF, Ibim SE, Willougghby DA, Attawia M, Allcock HR, Ambrosio AA.
A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration.
J Biomed Mater Res 1996; 30: 133-138.
131. Bergsma EJ, Brujn W, Rozema FR, Bos RM, Boering G. Late tissue response to poly(l-lactide) bone
plates and screws. Biomaterials 1995; 16: 25-31.
132. Kikuchi M, Tanaka J, Koyama Y, Takakuda K. Cell culture tests of TCP/CPLA composite. J Biomed
Mater Res 1999; 48: 108-110.
133. Deng X, Hao J, Wang C. Preparation and mechanical properties of nanocomposites of poly(d,l-lactide)
with Ca-defi cient hydroxyapatite nanocrystals. Biomaterials 2001; 22: 2867-2873.
134. Kasaga T, Yoshio O, Masayuki N, Yoshihiro A. Preparation and mechanical properties of polylactide
acid composites containing hydroxyapatite fi bres. Biomaterials 2001; 22: 19-23.
135. Xu HHK, Simon Jr CG. Self-hardening calcium phosphate composite scaffold for bone tissue engineer-
ing. J Orthopaedic Res 2004; 22: 535-543.
136. Xu HHK, Quinn JB, Takagi S, Chow LC. Synergistic reinforcement of in situ hardening calcium phos-
phate composite scaffold for bone tissue engineering. Biomaterials 2004; 25: 1029-1037.
137. Greish YE, Bender JD, Lakshmi S, Brown PW, Allcock HR, Laurencin CT. Low temperature formation
of hydroxyapatite-poly(alkloxybezoate)phosphatzene composites for biomedical applications. Biomate-
rials 2005; 26: 1-9.
138. Rodrigues CVM, Serricella P, Linhares ABR, Guerdes RM, Borojevic R, Rossi MA, Duarte MEL,
Farina M. Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engi-
neering. Biomaterials 2003; 24: 4987-4997.
139. Peter SJ, Miller ST, Zhu G, Yasko AW, Mikos AG. In vivo degradation of poly(propylene fumarate)/β-
tricalcium phosphate injectable composite scaffold. J Biomed Mater Res 1998; 41: 1-7.
140. Juhasz JA, Best SM, Brooks R, Kawashita M, Miyata N, Kokubo T, Nakamura T, Bonfi eld W. Mechani-
cal properties of glass-ceramic A-W-polyethylene composites: Effect of fi ller content and particle size.
Biomaterials 2004; 25: 949-955.
141. Kasuga T, Maeda H, Kato K, Nogami M, Hata K, Ueda M. Preparation of poly(lactide acid) composites
coating calcium carbonate (vaterite). Biomaterials 2003; 24: 3247-3253.
142. Ambrosio AMA, Sahota JS, Khan Y, Laurencin CT. A novel amorphous calcium phosphate polymer
ceramic for bone repair: I. Synthesis and characterization. J Biomed Mater Res 2001; 58: 295-301.
143. Khan YM, Katti DS, Laurencin CT. Novel polymer-synthesised ceramic composite-based system for
bone repair: An in vitro evaluation. J Biomed Mater Res 2004; 69A: 728-737.
144. Yin Y, Ye F, Cui J, Zhang F, Li X, Yan K. Preparation and characterization of macroporous chitosan-
gelatin/β-tricalcium phosphate composite scaffolds for bone tissue engineering. J Biomed Mater Res
2003; 67A: 844-855.
145. Zhang R, Ma PX. Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineer-
ing. I. Preparation and morphology. J Biomed Mater Res 1999; 44: 446-455.
146. Guan L, Davies JE. Preparation and characterisation of a highly macroporous biodegradable composite
tissue engineering scaffold. J Biomed Mater Res 2004; 71A: 480-487.
147. Devin JE, Attawia MA, Laurencin CT. Three-dimensional degradable porous polymer-ceramic matri-
ces for use in bone repair. J Biomater Sci Poly Ed 1996; 7: 661-669.
148. Stamboulis AG, Boccaccini AR, Hench LL. Novel biodegradable polymer/bioactive glass composites
for tissue engineering applications. Adv Eng Mater 2002; 4: 105-109.
149. Lu HH, El-Amin AF, Scott KD, Laurencin CT. Three-dimensional, bioactive biodegradable, polymer-
bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis
and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res 2003; 64A: 465-474.
150. Zhang K, Wang Y, Hillmayer MA, Francis LF. Processing and properties of porous poly(l-lactide)/
bioactive glass composites. Biomaterials 2004; 25: 2489-2500.
Search WWH ::




Custom Search