Biomedical Engineering Reference
In-Depth Information
18
Improving Blood Compatibility
of Biomaterials Using a Novel
Antithrombin-Heparin
Covalent Complex
Leslie Roy Berry and Anthony Kam Chuen Chan
CONTENTS
18.1 Introduction ......................................................................................................................... 535
18.2 Antithrombin....................................................................................................................... 538
18.2.1 Chemical Structure of Antithrombin ..................................................................... 538
18.2.2 Functional Biochemistry of Antithrombin ............................................................ 539
18.3 Heparin................................................................................................................................ 541
18.3.1 Chemical Structure of Heparin .............................................................................. 541
18.3.2 Functional Biochemistry of Heparin ..................................................................... 542
18.4 Overview of Covalent Antithrombin-Heparin Complexes................................................. 544
18.4.1 Limitations of Current Heparins ............................................................................ 544
18.4.2 Potential Advantages of Covalent Antithrombin-Heparin Complexes ................. 545
18.5 Development of Covalent Antithrombin-Heparin Complexes ........................................... 547
18.5.1 Concepts for Covalent Antithrombin-Heparin Synthesis...................................... 547
18.5.2 Chemical Structures and In Vitro Activities .......................................................... 548
18.5.3 Effects In Vivo ........................................................................................................ 553
18.6 Surface Coating with Covalent Antithrombin-Heparin Complexes .................................. 556
18.6.1 Chemistry and In Vitro Characterization............................................................... 556
18.6.2 In Vivo Performance .............................................................................................. 558
18.7 Future Directions................................................................................................................. 560
References ...................................................................................................................................... 560
18.1 INTRODUCTION
Use of biomaterials in clinical diagnosis and treatment is an increasingly prevalent application of
chemical polymers. 1,2 Indeed, catheters, 3 stents, 4 heart valves, 5 bypass circuits, 6 dialysis devices, 7
and other devices constructed from biochemical polymers have enabled major advances in medical
care. One persistent problem associated with the biomaterials involves biocompatibility of the poly-
mer surfaces with blood. In particular, thrombotic complications induced by interactions between
the biomaterials and the vascular system remain an obstacle to their functional utility. 8 This is a
vexing issue especially in the pediatric population requiring catheters for blood sampling or treat-
ment. Studies have clearly established that central venous catheters cause up to 90% of thromboses
occurring in neonates 9 and approximately 60% of thromboses observed in children. 10 Clot forma-
tion in and around catheter lines not only prevents treatment from being received by the pediatric
535
 
Search WWH ::




Custom Search