Biomedical Engineering Reference
In-Depth Information
65. Cedric C., Michael C.M., Christine V., Denis L., Patrick C. and Liliane L., Heparin coated poly(alkyl-
cyanoacrylate) nanoparticles coupled to hemoglobin a new oxygen carrier, Biomaterials , 25, 3081-3086,
2004.
66. Kawasaki E.S. and Player A., Nanotechnology, nanomedicine, and the development of new, effective
therapies for cancer: Review, Nanomedicine: Nanotechnology, Biology and Medicine , 1, 101-109, 2005.
67. Gustavo A.A., de Queiroz A.A.A. and Julio S.R., Immobilization of a nonsteroidal antiinfl ammatory
drug onto commercial segmented polyurethane surface to improve haemocompatibility properties,
Biomaterials , 23, 1625-1638, 2002.
68. Dong-an W., Jian J., Chang-you G., Guan-Hua Y. and Lin-xian F. Surface coating of stearyl poly(ethylene
oxide) coupling-polymer on polyurethane guiding catheters with poly(ether urethane) fi lm-building
additive for biomedical applications, Biomaterials , 22, 1549-1562, 2001.
69. Santerre J.P., Woodhouse K., Laroche G. and Labow R.S., Understanding the biodegradation of poly-
urethanes: From classical implants to tissue engineering materials, Biomaterials , 26, 7457-7470, 2005.
70. Ashley F.L., A new type of breast prosthesis: Preliminary report, Plastic and Reconstructive Surgery ,
45, 421-424, 1970.
71. Ashley F.L., Further studies on the natural-Y breast prosthesis, Plastic and Reconstructive Surgery , 49,
414 - 419, 1972.
72. Batich C. and Williams J., Toxic hydrolysis product from biodegradable foam implant, Journal of
Biomedical Materials Research , 23, 311-319, 1989.
73. Ignacio A.R., Jeffrey B.S. and David W.G., Polyurethane coatings release bioactive antibodies to reduce
bacterial adhesion, Journal of Controlled Release , 63, 175-189, 2000.
74. Ji-Dong G., Microbial colonization of polymeric materials for space applications and mechanisms
of biodeterioration: A review, International Biodeterioration and Biodegradation , Available online
October 2006.
75. Kim J.H. and Kim S.C., PEO-grafting on PU/PS IPNs for enhanced blood compatibility—effect of
pendant length and grafting density, Biomaterials , 23, 2015-2025, 2002.
76. Gombotz W.R. and Wee S.F., Protein release from alginate matrices, Advanced Drug Delivery Reviews ,
31, 267-285, 1998.
77. Draget K.I., Skjak-Braek G. and Smidsrod O., Alginate based new materials, International Journal of
Biological Macromolecules , 21, 47-55, 1997.
78. Yong-Dan T., Subbu S.V., Freddy Y.C.B. and Li-Wei W., Sustained release of hydrophobic and
hydrophilic drugs from a fl oating dosage form, International Journal of Pharmaceutics , Ava i lable
online 3 December 2006 (Science Direct).
79. Eiselt P., Yeh J., Latvala R.K., Shea L.D. and Mooney D.J., Porous carriers for biomedical applications
based on alginate hydrogels, Biomaterials , 21, 1921-1927, 2000.
80. Alsberg V., Anderson K., Albeiruti A., Franceshi R.T. and Mooney D.J., Cell interactive alginate hydro-
gels for bone tissue engineering, Journal of Dental Research , 80, 2025-2029, 2001.
81. Pornsak S. and Ross A.K., Development of polysaccharide gel-coated pellets for oral administration:
2. calcium alginate, European Journal of Pharmaceutical Sciences , 29, 139-147, 2006.
82. Ravi Kumar M.N.V., Muzzarelli R.A.A., Muzzarelli C., Sashiwa H. and Domb A.J., Chitosan chemistry
and pharmaceutical perspectives, Chemical Reviews , 104, 6017-6084, 2004.
83. Marguerite R., Chitin and chitosan, properties and applications: Review, Progress in Polymer Science ,
31, 603-632, 2006.
84. Meera G. and Emilia A.T., Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate
and chitosan—a review, Journal of Controlled Release , 114, 1-14, 2006.
85. Alberto D.M., Michael S. and Makarand V.R., Chitosan: A versatile biopolymer for orthopaedic tissue
engineering: Review article, Biomaterials , 16, 5983-5990, 2005.
86. Barbosa M.A., Granja P.L., Barrias C.C. and Amaral I.F., Polysaccharides as scaffolds for bone regen-
eration, ITBM-RBM , 26, 212-217, 2005.
87. Jayakumar R., Prabaharan M., Reis R.L. and Mano J.F., Graft copolymerized chitosan—present status
and applications, Carbohydrate Polymers , 62, 142-158, 2005.
88. Thomas F., Rivelino M., Hui S.K. and Molly S.S., Chitin-based tubes for tissue engineering in the nerv-
ous system, Biomaterials , 26, 4624-4632, 2005.
89. Sunil A.A., Nadagouda N.M. and Tejraj M.A., Recent advances on chitosan-based micro- and nanopar-
ticles in drug delivery, Journal of Controlled Release , 100, 5-28, 2004.
90. Jiyoung M.D. and Kam W.L., Natural polymers for gene delivery tissue engineering, Advanced Drug
Delivery Reviews , 58, 487-499, 2006.
Search WWH ::




Custom Search