Biomedical Engineering Reference
In-Depth Information
179. Moore, V.C. et al., Individually suspended single-walled carbon nanotubes in various surfactants, Nano
Lett ., 3, 1379, 2003.
180. Wang, J., Musameh, M., and Lin, Y.H., Solubilization of carbon nanotubes by nafi on toward the prepa-
ration of amperometric biosensors, J. Am. Chem. Soc ., 125, 2408, 2003.
181. Fan, Z. and Harrison, D.J., Permeability of glucose and other neutral species through recast perfl uoro-
sulfonated ionomer fi lms, Anal. Chem. , 64, 1304, 1992.
182. Fortier, G., Vaillancourt, M., and Belanger, D., Evaluation of nafi on as media for glucose oxidase immo-
bilization for the development of an amperometric glucose biosensor, Electroanalysis , 4, 275, 1992.
183. McCreery, L., In Bard, A.J. (Ed.), Electroanalytical Chemistry , vol. 17, 221, Marcel Dekker, New York,
USA, 1991.
184. Lin, Y.H. et al., Glucose biosensors based on carbon nanotube nanoelectrode ensembles, Nano Lett. , 4,
191, 2004.
185. Liu, Z. et al., Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling
technique, Langmuir , 16, 3569, 2000.
186. Sotiropoulou, S. and Chaniotakis, N.A., Carbon nanotube array-based biosensor, Anal. Bioanal. Chem. ,
375, 103, 2003.
187. Nugent, J.M. et al., Fast electron transfer kinetics on multiwalled carbon nanotube microbundle elec-
trodes, Nano Lett. , 1, 87, 2001.
188. Boo, H. et al., Electrochemical nanoneedle biosensor based on multiwall carbon nanotube, Anal. Chem .,
78, 617, 2006.
189. Kim, K.S. et al., In situ manipulation and characterization using nanomanipulator inside fi eld emission-
scanning electron microscope, Rev. Sci. Instrum ., 74 , 4021, 2003.
190. Britto, P.J., Santhanam, K.S.V., and Ajayan, P.M., Carbon nanotube electrode for oxidation of dopamine,
Bioelectrochem. Bioenerg. , 41, 121, 1996.
191. Valentini, F. et al., Carbon nanotube purifi cation: preparation and characterization of carbon nanotube
paste electrodes, Anal. Chem ., 75, 5413, 2003.
192. Wang, J. and Musameh, M., Carbon nanotube/tefl on composite electrochemical sensors and biosensors,
Anal. Chem ., 75, 2075, 2003.
193. Pumera, M., Merkoçi, A., and Alegret, S., Carbon nanotube-epoxy composites for electrochemical sens-
ing, Sensor. Actuator. B Chem. , 113, 617, 2005.
194. Trojanowicz, M., Mulchandani, A., and Mascini, M., Carbon nanotubes-modifi ed screen-printed elec-
trodes for chemical sensors and biosensors, Anal. Lett. , 37, 3185, 2004.
195. Balavoine, F. et al., Helical crystallization of proteins on carbon nanotubes: a fi rst step towards the
development of new biosensors, Angew. Chem. Int. Ed. , 38, 1912, 1999.
196. Chen, R.J. et al., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein
immobilization, J. Am. Chem. Soc. , 123, 3838, 2001.
197. Chen, R.J. et al., Noncovalent functionalization of carbon nanotubes for highly specifi c electronic bio-
sensors, Proc. Natl Acad. Sci ., 100, 4984, 2003.
198. Liu, J. et al., Achieving direct electrical connection to glucose oxidase using aligned single walled car-
bon nanotube arrays, Electroanalysis , 17, 38, 2005.
199. He, P.G., Xu, Y., and Fang, Y.Z., Applications of carbon nanotubes in electrochemical DNA biosensors,
Mikrochim. Acta , 152, 175, 2006.
200. Pedano, M.L. and Rivas, G.A., Adsorption and electrooxidation of nucleic acids at carbon nanotubes
paste electrodes, Electrochem. Commu ., 6, 10, 2004.
201. Wu, K.B. et al., Direct electrochemistry of DNA, guanine and adenine at a nanostructured fi lm-modi-
fi ed electrode, Anal. Bioanal. Chem ., 376, 205, 2003.
202. Jung, D.H. et al., Covalent attachment and hybridization of DNA oligonucleotides on patterned single-
walled carbon nanotube fi lms, Langmuir , 20, 8886, 2004.
203. Chiang, C.K. et al, Electrical conductivity in doped polyacetylene, Phys. Rev. Lett. , 39, 1098, 1977.
204. Malhotra, B.D. and Singhal, R., Conducting polymer based biomolecular electronic devices, Pramana-
J. Phys. , 61, 331, 2003.
205. Jiang, L.S. et al., Sensing characteristics of polypyrrole-poly(vinyl alcohol) methanol sensors prepared
by in situ vapor state polymerization, Sensor. Actuator. B Chem. , 105, 132, 2005.
206. Onoda, M., Tada, K., and Shinkuma, A., In situ polymerization process of polypyrrole ultrathin fi lms,
Thin Solid Films , 499, 61, 2006.
207. Gerard, M., Chaubey, A., and Malhotra, B.D., Application of conducting polymers to biosensors, Bio-
sens. Bioelectron. , 17, 345, 2002.
Search WWH ::




Custom Search