Biomedical Engineering Reference
In-Depth Information
147. Park, I.S. and Kim, N., Development of a chemiluminescent immunosensor for chloramphenicol, Anal.
Chim. Acta , 578, 19, 2006.
148. Marquette, C.A. and Blum, L.J., Regenerable immunobiosensor for the chemiluminescent fl ow injection
analysis of the herbicide 2,4-D, Talanta , 51, 395, 2000.
149. Lee, W. et al., Nanoscale fabrication of protein on self-assembled monolayer and its application to sur-
face plasmon resonance immunosensor, Enzym. Microb. Tech. , 35, 678, 2004.
150. Samsonova, J.V., Determination of ivermectin in bovine liver by optical immunobiosensor, Biosens.
Bioelectron. , 17, 523, 2002.
151. Iijima, S., Helical microtubules of graphitic carbon, Nature , 354, 56, 1991.
152. Ebbesen, T.W. et al., Electrical conductivity of individual carbon nanotubes, Nature , 382, 54, 1996.
153. Iijima, S. and Ichihashi, T., Single-shell carbon nanotubes of 1 nm diameter, Nature , 363, 603, 1993.
154. Chen, R.S. et al., Carbon fi ber nanoelectrodes modifi ed by single-walled carbon nanotubes, Anal.
Chem ., 75, 6341, 2003.
155. Moore, R.R., Banks, C.E., and Compton, R.G., Basal plane pyrolytic graphite modifi ed electrodes: com-
parison of carbon nanotubes and graphite powder as electrocatalysts, Anal. Chem ., 76, 2677, 2004.
156. Gong, K.P. et al., Sol-gel-derived ceramic-carbon nanotube nanocomposite electrodes: tunable elec-
trode dimension and potential electrochemical applications, Anal. Chem ., 76, 6500, 2004.
157. Niyogi, S. et al., Chemistry of single-walled carbon nanotubes, Acc. Chem. Res ., 35, 1105, 2002.
158. Ajayan, P.M., Nanotubes from carbon, C hem. Rev ., 99, 1787, 1999.
159. Odom, T.W. et al., Structure and electronic properties of carbon nanotubes, J. Phys. Chem. B , 104, 2794,
2000.
160. Merkoçi, A. et al., New materials for electrochemical sensing VI: carbon nanotubes, Tren ds Anal .
Chem. , 24, 826, 2005.
161. Liu, J. et al., Fullerene pipes, Science , 280, 1253, 1998.
162. Koshio, A. et al., A simple way to chemically react single-wall carbon nanotubes with organic materials
using ultrasonication, Nano Lett ., 1, 361, 2001.
163. Hiura, H., Ebbesen, T.W., and Tanigaki, K., Opening and purifi cation of carbon nanotubes in high
yields, Adv. Mater ., 7, 275, 1995.
164. Kuznetsova, A. et al., Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS
and vibrational spectroscopic studies, J. Am. Chem. Soc ., 123, 10699, 2001.
165. Joshi, P.P. et al., Amperometric biosensors based on redox polymer-carbon nanotube-enzyme compos-
ites, Anal. Chem ., 77, 3183, 2005.
166. Lin, Y. et al., Advances toward bioapplications of carbon nanotubes, J. Mater. Chem ., 14, 527, 2004.
167. Musameh, M. et al., Low-potential stable NADH detection at carbon-nanotube-modifi ed glassy carbon
electrodes, Electrochem. Commun ., 4, 743, 2002.
168. Gan, Z.H. et al., Electrochemical studies of single-wall carbon nanotubes as nanometer-sized activators
in enzyme-catalyzed reaction, Anal. Chim. Acta , 511, 239, 2004.
169. Luo, H.X. et al., Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon
nanotube fi lm on a glassy carbon electrode, Anal. Chem ., 73, 915, 2001.
170. Wu, K.B., Fei, J.J., and Hu, S.S., Simultaneous determination of dopamine and serotonin on a glassy
carbon electrode coated with a fi lm of carbon nanotubes, Anal. Biochem ., 318, 100, 2003.
171. Wang, J.X. et al., Direct electrochemistry of cytochrome c at a glassy carbon electrode modifi ed with
single-wall carbon nanotubes, Anal. Chem. , 74, 1993, 2002.
172. Cai, C.X. and Chen, J., Direct electron transfer of glucose oxidase promoted by carbon nanotubes, Anal.
Biochem. , 332, 75, 2004.
173. Duro, R. et al., Interfacial adsorption of polymers and surfactants: implications for the properties of
disperse systems of pharmaceutical interest, Drug Dev. Ind. Pharm. , 1999, 25, 817.
174. O'Connell, M.J. et al., Reversible water-solubilization of single-walled carbon nanotubes by polymer
wrapping, Chem. Phys. Lett. , 342, 265, 2001.
175. Lisunova, M.O. et al., Stability of the aqueous suspensions of nanotubes in the presence of nonionic
surfactant, J. Colloid Interface Sci. , 299, 740, 2006.
176. Bandyopadhyaya, R. et al., Stabilization of individual carbon nanotubes in aqueous solutions, Nano
Lett ., 2, 25, 2002.
177. Wang, H. et al., Shear-SANS study of single-walled carbon nanotube suspensions, Chem. Phys. Lett. ,
416, 182, 20 05.
178. Islam, M.F. et al., High weight fraction surfactant solubilization of single-wall carbon nanotubes in
water, Nano Lett. , 3, 269, 2003.
Search WWH ::




Custom Search