Biomedical Engineering Reference
In-Depth Information
89. Leung, K.T. et al., Mineralization of p -nitrophenol by pentachlorophenol-degrading Sphingomonas
spp., FEMS Microbiol. Lett. , 155, 107, 1997.
90. Spain, J.C. and Nishino, S.F., Degradation of 1,4-dichlorobenzene by a Pseudomonas sp., Appl. Envi-
ron. Microbiol. , 53, 1010, 1987.
91. Rensing, C. and Maier, R.M., Issues underlying use of biosensors to measure metal bioavailability,
Ecotoxicol. Environ. Saf. , 56, 140, 2003.
92. Belkin, S., Microbial whole-cell sensing systems of environmental pollutants, Curr. Opin. Microbiol. ,
6, 206, 2003.
93. Lei, Y., Chen, W., and Mulchandani, A., Microbial biosensors, Anal. Chim. Acta , 568, 200, 2006.
94. Rainina, E.I. et al., The development of a new biosensor based on recombinant Escherichia coli for the
direct-detection of organophosphorus neurotoxins, Biosens. Bioelectron. , 11, 991, 1996.
95. Biran, I. et al., Online and in situ monitoring of environmental pollutants: electrochemical biosensing
of cadmium, Environ. Microbiol. , 2, 285, 2000.
96. Jia, J.B. et al., Co-immobilized microbial biosensor for BOD estimation based on sol/gel derived com-
posite material, Biosens. Bioelectron. , 18, 1023, 2003.
97. Tan, T.C. and Qian, Z.R., Dead Bacillus subtilis cells for sensing biochemical oxygen demand of waters
and wastewaters, Sensor. Actuator. B Chem. , 40, 65, 1997.
98. Tan, T.C., Li, F., and Neoh, K.G., Microbial membrane modifi ed dissolved oxygen probe for rapid bio-
chemical oxygen demand measurement, Sensor. Actuator. B Chem. , 8, 167, 1992.
99. Suriyawattanakul, L. et al., The use of co-immobilization of Tr ichosporon cuta neu m and Bacillus
licheniformis for a BOD sensor, Appl. Microbiol. Biotechnol. , 59, 40, 2002.
100. Jiang, Y.Q. et al., Optical biosensor for the determination of BOD in seawater, Talanta , 70, 97, 2006.
101. Tkáč, J. et al., Determination of total sugars in lignocellulose hydrolysate by a mediated Gluconobacter
oxydans biosensor, Anal. Chim. Acta , 420, 1, 2000.
102. Reshetilov, A.N. et al., FET-microbial sensor for xylose detection based on Gluconobacter oxydans
cells, Biosens. Bioelectron. , 11, 401, 1996.
103. Reshetilov, A.N. et al., Evaluation of a Gluconobacter oxydans whole cell biosensor for amperometric
detection of xylose, Biosens. Bioelectron. , 12, 241, 1997.
104. Han, T.S. et al., Microbial sensor for trichloroethylene determination, Anal. Chim. Acta , 431, 225, 2001.
105. Elasriá, M.O. and Miller, R.V., A Pseudomonas aeruginosa biosensor responds to exposure to ultravio-
let radiation, Appl. Microbiol. Biotechnol. , 50, 455, 1998.
106. Ohfuji, K. et al., Construction of a glucose sensor based on a screen-printed electrode and a novel
mediator pyocyanin from Pseudomonas aeruginosa, Biosens. Bioelectron. , 19, 1237, 2004.
107. King, J.M.H. et al., Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and
biodegradation, Science , 249, 778, 1990.
108. Burlage, R.S., Sayler, G.S., and Larimer, F., Monitoring of naphthalene catabolism by bioluminescence
with nah-lux transcriptional fusions, J. Bacteriol. , 172, 4749, 1990.
109. Trögl, J. et al., Selectivity of whole cell optical biosensor with immobilized bioreporter Pseudomonas
fl u of r e s c e n s HK44, Sensor. Actuator. B Chem. , 107, 98, 2005.
110. Webb, O.F. et al., Kinetics and response of a Pseudomonas fl uorescens HK44 biosensor, Biotechnol.
Bioeng. , 54, 491, 1997.
111. Takayama, K., Ikeda, T., and Nagasawa, T., Mediated amperometric biosensor for nicotinic acid based
on whole cells of Pseudomonas fl uorescens, Electroanalysis , 8, 765, 1996.
112. Chee, G.J., Nomura, Y., and Karube, I., Biosensor for the estimation of low biochemical oxygen demand,
Anal. Chim. Acta , 379, 185, 1999.
113. Lanyon, Y.H. et al., Flow injection analysis of benzene using an amperometric bacterial biosensor, Anal.
Lett. , 37, 1515, 2004.
114. Rasinger, J.D. et al., Evaluation of an FIA operated amperometric bacterial biosensor, based on Pseudo-
monas putida F1 for the detection of benzene, toluene, ethylbenzene, and xylenes (BTEX), Anal. Lett. ,
10, 1531, 2005.
115. Minnan, L. et al., Isolation and characterization of a high H2-producing strain klebsiella oxytoca HP1
from a hot spring, Res . Microbiol. , 156, 76, 2005.
116. Ohki, A. et al., BOD sensor using klebsiella oxytoca AS1, Int. J. Environ. Anal. Chem. , 56, 261, 1994.
117. Kim, M.N. and Kwon, H.S., Biochemical oxygen demand sensor using
Biochemical oxygen demand sensor using Serratia marcescens
Serratia marcescens LSY 4,
Biosens. Bioelectron. , 14, 1, 1999.
118. Emelyanova, E.V. and Reshetilov, A.N., Rhodococcus erythropolis as the receptor of cell-based sensor
for 2,4-dinitrophenol detection: effect of 'co-oxidation', Process Biochem. , 37, 683, 2002.
Search WWH ::




Custom Search