Biomedical Engineering Reference
In-Depth Information
69. Huang, Y., Leobandung, W., Foss, A., Peppas, N.A. Molecular aspects of muco and bioadhesion: teth-
ered structures and site-specifi c surfaces. J. Con. Rel ., 65, 63, 2000.
70. Ahuja, A., Khar, R.K., Ali, J. Mucoadhesive drug delivery systems. Drug Dev. Ind. Pharm ., 23, 489, 1997.
71. Dodou, D., Breedveld, P., Wieringa, P.A. Mucoadhesives in the gastrointestinal tract: revisiting the
literature for novel applications. Eur. J. Pharm. Biopharm ., 60, 1, 2005.
72. Peppas, N.A., Sahlin, J.J. Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomateri-
als , 17, 1553, 1996.
73. Lowman, A.M., Peppas, N.A. Hydrogels. In Enclyopedia of Controlled Drug Delivery , Vol. 1, Mathiowitz,
E. (Ed.) John Wiley & Sons Inc., New York, 1999, 397.
74. Haas, J., Lehr, C.M. Developments in the area of bioadhesive drug delivery systems. Expert Opin. Bio.
Ther ., 2, 287, 2002.
75. Leung, S.-H.S., Robinson, J.R. The contribution of anionic polymer structural features to mucoadhe-
sion. J. Con. Rel ., 5, 223, 1988.
76. Gu, J.M., Robinson, J.R., Leung, S.H. Binding of acrylic polymers to mucin/epithelial surfaces:
structure-property relationships. Crit. Rev. Ther. Drug Carrier Sys ., 5, 21, 1988.
77. Park, H., Robinson, J.R. Mechanism of mucoadhesion of PAA hydrogels. Pharm. Res ., 4, 457, 1987.
78. Bernkop-Schnurch, A. Chitosan and its derivatives: potential excipients for peroral peptide delivery
systems. Int. J. Pharm ., 194, 1, 2000.
79. Blanchette, J., Kavimandan, N., Peppas, N.A. Principles of transmucosal delivery of therapeutic agents.
Biomed. Pharmacotherapy , 58, 142, 2004.
80. Peppas, N.A., Klier, J. Controlled release by using poly(methacrylic acid- g -ethylene glycol) hydrogels.
J. Con. Rel ., 16, 203, 1991.
81. Ascentiis, A.D., Degrazia, J.L., Bowman, C.N., Colombo, P., Peppas, N.A. Mucoadhesion of P (2-HEMA)
is improved when linear PEO chains are added to polymer networks. J. Con. Rel ., 33, 197, 1995.
82. Peppas, N.A., Kuys, K.B., Torres-Lugo, M., Lowman, A.M. PEG containing hydrogels in drug delivery.
J. Con. Rel ., 62, 81, 1999.
83. Leitner, V.M., Walker, G.F., Bernkop-Schnurch A. Thiolated polymers: evidence for the formation of
disulphide bonds with mucus glycoproteins. Eur. J. Pharm. Biopharm ., 56, 207, 2003.
84. Greindl, M., Bernkop-Schnurch, A. Development of a novel method for the preparation of thiolated
polyacrylic acid nanoparticles. Pharm. Res ., 23, 2183, 2006.
85. Bernkop-Schnurch, A., Weithaler, A., Albrecht, K., Greimel, A. Thiomers: preparation and in vitro
evaluation of a mucoadhesive nanoparticulate drug delivery system. Int. J. Pharm ., 317, 76, 2006.
86. David, J., Brayden, D.J. O'Mahony, D.J. Novel oral drug delivery gateways for biotechnology products:
polypeptides and vaccines. Pharm. Sci. Tech. Tod ., 2, 67, 1998.
87. Anderson, J.M., Balda, M.S., Fanning, A.S. The structure and regulation of tight junctions. Curr. Opin.
Cell Bio. Suppl ., 5, 772, 1993.
88. Borcharel, G. et al. The potential of mucoadhesive polymers in enhancing intestinal peptide drug abs.
III: effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro . J. Con. Rel ., 39,
131, 1996.
89. Luessen, H.L. et al. Mucoadhesive polymers in peroral peptide drug delivery. IV polycarbophil and chito-
san are potent enhancers of peptide transport across intestinal mucosa in vitro . J. Con. Rel ., 45, 15, 1997.
90. Luessen, H.L. et al. Mucoadhesive polymers in peroral peptide drug delivery. II carbomer and poly
carbophil are potent inhibitors of intestinal proteolytic enzyme trypsin. Pharm. Res ., 12, 129, 1995.
91. Artursson, P., Ungell, A.L., Löfroth, J.E. Selective paracellular permeability in two models of intestinal
absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm.
Res ., 10, 1123, 1993.
92. Rubas, W. et al. Flux measurements across caco-2 monolayers may predict transport in human large
intestinal tissue. J. Pharm. Sci ., 85, 165, 1996.
93. Kriwet, B., Kissel, T. Poly(acrylic acid) microparticles widen the intercellular spaces of caco-2 cell
monolayers: examination by confocal laser scanning microscopy. Eur. J. Pharm. Biopharm ., 42, 233,
1996.
94. Ichikawa, H., Peppas, N.A. Novel complexation hydrogels for oral peptide delivery: in vitro evalua-
tion of their cytocompatibility and insulin-transport enhancing effects using caco-2 cell monolayers.
J. Biomed. Mat. Res ., 67, 609, 2003.
95. Torres-Lugo, M., Garcia, M., Record, R., Peppas, N.A. pH sensitive hydrogels as GI tract absorption
enhancers: transport mechanism of salmon calcitonin and other model molecules using caco-2 cell
model. Biotech. Prog ., 18, 612, 2002.
Search WWH ::




Custom Search