Biomedical Engineering Reference
In-Depth Information
86. Cho, B.C., Chung, H.Y., Lee, D.G., Yang, J.D. et al., The effect of chitosan bead encapsulating calcium
sulfate as an injectable bone substitute on consolidation in the mandibular distraction osteogenesis of a
dog model, J Oral Maxillofac Surg , 63, 1753, 2005.
87. Liu, H., Li, H., Cheng, W., Yang, Y. et al., Novel injectable calcium phosphate/chitosan composites for
bone substitute materials, Acta Biomater , 2006.
88. Hoemann, C.D., Sun, J., Legare, A., Mckee, M.D. et al., Tissue engineering of cartilage using an inject-
able and adhesive chitosan-based cell-delivery vehicle, Osteoarthritis Cartilage , 13, 318, 2005.
89. Griffon, D.J., Sedighi, M.R., Schaeffer, D.V., Eurell, J.A. et al., Chitosan scaffolds: interconnective pore
size and cartilage engineering, Acta Biomater , 2, 313, 2006.
90. Lin, S.J., Jee, S.H., Hsaio, W.C., Lee, S.J. et al., Formation of melanocyte spheroids on the chitosan-
coated surface, Biomaterials , 26, 1413, 2005.
91. Adekogbe, I. and Ghanem, A., Fabrication and characterization of DTBP-crosslinked chitosan scaffolds
for skin tissue engineering, Biomaterials , 26, 7241, 2005.
92. Gomes, M.E., Ribeiro, A.S., Malafaya, P.B., Reis, R.L. et al., A new approach based on injection mould-
ing to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degrada-
tion behaviour, Biomaterials , 22, 883, 2001.
93. Marques, A.P., Reis, R.L. and Hunt, J.A., The biocompatibility of novel starch-based polymers and
composites: in vitro studies, Biomaterials , 23, 1471, 2002.
94. Costa, S.A. and Reis, R.L., Immobilisation of catalase on the surface of biodegradable starch-based
polymers as a way to change its surface characteristics, J Mater Sci Mater Med , 15, 335, 2004.
95. Salgado, A.J., Figueiredo, J.E., Coutinho, O.P. and Reis, R.L., Biological response to pre-mineralized
starch based scaffolds for bone tissue engineering, J Mater Sci Mater Med , 16, 267, 2005.
96. Gomes, M.E., Holtorf, H.L., Reis, R.L. and Mikos, A.G., Infl uence of the porosity of starch-based fi bre
mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured
in a fl ow perfusion bioreactor, Tissue Eng , 12, 801, 2006.
97. Williams, D., The proving of polyhydroxybutyrate and its potential in medical technology, Med Device
Technol , 16, 9, 2005.
98. Shishatskaya, E.I. and Volova, T.G., A comparative investigation of biodegradable polyhydroxyalkano-
ate fi lms as matrices for in vitro cell cultures, J Mater Sci Mater Med , 15, 915, 2004.
99. Price, R.D., Myers, S., Leigh, I.M. and Navsaria, H.A., The role of hyaluronic acid in wound healing:
assessment of clinical evidence, Am J Clin Dermatol , 6, 393, 2005.
100. Nehrer, S., Domayer, S., Dorotka, R., Schatz, K. et al., Three-year clinical outcome after chondrocyte
transplantation using a hyaluronan matrix for cartilage repair, Eur J Radiol , 57, 3, 2006.
101. Horan, R.L., Antle, K., Collette, A.L., Wang, Y. et al., In vitro degradation of silk fi broin, Biomaterials ,
26, 3385, 2005.
102. Wang, Y., Blasioli, D.J., Kim, H.J., Kim, H.S. et al., Cartilage tissue engineering with silk scaffolds and
human articular chondrocytes, Biomaterials , 27, 4434, 2006.
103. Moore, M.J., Jabbari, E., Ritman, E.L., Lu, L. et al., Quantitative analysis of interconnectivity of porous
biodegradable scaffolds with micro-computed tomography, J Biomed Mater Res A , 71, 258, 2004.
104. Sander, E.A., Alb, A.M., Nauman, E.A., Reed, W.F. et al., Solvent effects on the microstructure and
properties of 75/25 poly(d,l-lactide- co -glycolide) tissue scaffolds, J Biomed Mater Res A , 70, 506,
2004.
105. Lin, H.R. and Yeh, Y.J., Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineer-
ing: preparation, characterization, and in vitro studies, J Biomed Mater Res B Appl Biomater , 71, 52,
2004.
106. Liu, L., Zhang, L., Ren, B., Wang, F. et al., Preparation and characterization of collagen-hydroxyapatite
composite used for bone tissue engineering scaffold, Artif Cells Blood Substit Immobil Biotechnol , 31,
435, 2003.
107. Tsang, V.L. and Bathia, S.N., Three-dimensional tissue fabrication, Adv Drug Deliv Rev , 56, 1635,
2004.
108. Hutmacher, D.W., Sittinger, M. and Risbud, M.V., Scaffold-based tissue engineering: rationale for
computer-aided design and solid free-form fabrication systems, Tren ds Biotech nol , 22, 354, 2004.
109. Tan, K.H., Chua, C.K., Leong, K.F., Cheah, C.M. et al., Selective laser sintering of biocompatible
polymers for applications in tissue engineering, Biomed Mater Eng , 15, 113, 2005.
110. Chim, H., Hutmacher, D.W., Chou, A.M., Oliveira, A.L. et al., A comparative analysis of scaffold mate-
rial modifi cations for load-bearing applications in bone tissue engineering, Int J Oral Maxillofac Surg ,
35, 928, 2006.
Search WWH ::




Custom Search