Biomedical Engineering Reference
In-Depth Information
36. Tsuji, H., In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized
blend and nonblended fi lms, Biomaterials , 24, 537, 2003.
37. Tsuji, H., Ogiwara, M., Saha, S.K. and Sakaki, T., Enzymatic, alkaline, and autocatalytic degradation of
poly(l-lactic acid): effects of biaxial orientation, Biomacromolecules , 7, 380, 2006.
38. Srivastava, R.K. and Albertsson, A.C., Porous scaffolds from high molecular weight polyesters synthe-
sized via enzyme-catalyzed ring-opening polymerization, Biomacromolecules , 7, 2531, 2006.
39. Ma, X., Scaffolds for tissue fabrication, Materials Today , 7, 30, 2004.
40. Athanasiou, K.A., Niederauer, G.G. and Agrawal, C.M., Sterelization, toxicity, biocompatibility and
clinical applications of polylactic acid polyglycolic acid copolymers, Biomaterials , 17, 93, 1996.
41. Li, S., Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic
acids, Journal of Biomedical Materials Research , 48, 342, 1999.
42. Agrawal, C.M. and Athanasiou, K.A., Technique to control pH in vicinity of biodegrading PLA-PGA
implants, J Biomed Mater Res (Appl Biomater) , 38, 105, 1997.
43. Burdick, J.A., Padera, R.F., Huang, J.V. and Anseth, K.S., An investigation of the cytotoxicity and histo-
compatibility of in situ forming lactic acid based orthopedic biomaterials, J Biomed Mater Res , 63, 484,
2002.
44. Shi, G., Cai, Q., Wang, C., Lu, N. et al., Fabrication and biocompatibility of cell scaffolds of poly(l-lactic
acid) and poly(l-lactic- co -glycolic acid), Polymers for Advanced Technologies , 13, 2002.
45. Serrano, M.C., Pagani, R., Vallet-Regi, M., Pena, J. et al., In vitro biocompatibility assessment of
poly(epsilon-caprolactone) fi lms using L929 mouse fi broblasts, Biomaterials , 25, 5603, 2004.
46. Darling, A.L. and Sun, W., Free-form fabrication and micro-CT characterization of poly-epsilon-
caprolactone tissue scaffolds, IEEE Eng Med Biol Mag , 24, 78, 2005.
47. Serrano, M.C., Portoles, M.T., Vallet-Regi, M., Izquierdo, I. et al., Vascular endothelial and smooth
muscle cell culture on NaOH-treated poly(epsilon-caprolactone) fi lms: a preliminary study for vascular
graft development, Macromol Biosci , 5, 415, 2005.
48. Kweon, H., Yoo, M.K., Park, I.K., Kim, T.H. et al., A novel degradable polycaprolactone networks for
tissue engineering, Biomaterials , 24, 801, 2003.
49. Zeng, J., Chen, X., Liang, Q., Xu, X. et al., Enzymatic degradation of poly(l-lactide) and poly(epsilon-
caprolactone) electrospun fi bres, Macromol Biosci , 4, 1118, 2004.
50. Cho, H. and An, J., The effect of epsilon-caproyl/d,l-lactyl unit composition on the hydrolytic degrada-
tion of poly(d,l-lactide-ran-epsilon-caprolactone)-poly(ethylene glycol)-poly(d,l-lactide-ran-epsilon-
caprolactone), Biomaterials , 27, 544, 2006.
51. Wang, S., Lu, L. and Yaszemski, M.J., Bone-tissue-engineering material poly(propylene fumarate): cor-
relation between molecular weight, chain dimensions, and physical properties, Biomacromolecules , 7,
1976, 2006.
52. Wolfe, M.S., Dean, D., Chen, J.E., Fisher, J.P. et al., In vitro degradation and fracture toughness of mul-
tilayered porous poly(propylene fumarate)/beta-tricalcium phosphate scaffolds, J Biomed Mater Res ,
61, 159, 2002.
53. Guan, J., Fujimoto, K.L., Sacks, M.S. and Wagner, W.R., Preparation and characterization of highly
porous, biodegradable polyurethane scaffolds for soft tissue applications, Biomaterials , 26, 3961,
2005.
54. Reddi, A.H., Symbiosis of biotechnology and biomaterials: applications in tissue engineering of bone
and cartilage, J Cell Biochem , 56, 192, 1994.
55. Claase, M.B., Grijpma, D.W., Mendes, S.C., De Bruijn, J.D. et al., Porous PEOT/PBT scaffolds for bone
tissue engineering: preparation, characterization, and in vitro bone marrow cell culturing, J Biomed
Mater Res A , 64, 291, 2003.
56. Burkoth, A.K., Burdick, J. and Anseth, K.S., Surface and bulk modifi cations to photocrosslinked poly-
anhydrides to control degradation behavior, J Biomed Mater Res , 51, 352, 2000.
57. Kellomaki, M., Heller, J. and Tormala, P., Processing and properties of two different poly (ortho esters),
J Mater Sci Mater Med , 11, 345, 2000.
58. Bhattacharjee, A. and Bansal, M., Collagen structure: the Madras triple helix and the current scenario,
IUBMB Life , 57, 161, 2005.
59. Brodsky, B. and Persikov, A.V., Molecular structure of the collagen triple helix, Adv Protein Chem , 70,
301, 2005.
60. Doillon, C.J., Watsky, M.A., Hakim, M., Wang, J. et al., A collagen-based scaffold for a tissue
engineered human cornea: physical and physiological properties, Int J Artif Organs , 26, 764, 2003.
Search WWH ::




Custom Search