Geology Reference
In-Depth Information
0
0
0
0
0
0
0
0
0
0
0 P II.I , M
Π
a
500
1000
Jurassic
Lower crfetaceous
Upper cretaceous
Paleocene-miocene
Pliocene
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
H , M
Figure 3.1 Initial formation pressure in South Caspian Depression waterhead complexes .
Fields: 1. Karadagh, 2, Lokbatan (south flank), 3. Lokbatan-Puta. 4. Kushkhana,
5,  Zyrya, 6. Surakhany, 7. Peschany Isl., 8. Zhiloy Isl., 9. Gryazevaya Sopka, 10. Netyanye
Kamni, 11. 28 April, 12. Sangachaly-More, 13. Duvanny-More, 14. Bulla Isl., 15. Bulla-
More, 16.  Garasu, 17. Sangi-Mugan, 18. Persiyanina Stone, 19. Khamadagh-More, 20.
Kyurovdagh, 21. Karabagly, 22. Kyursangya, 23.  Mishovdagh, 24. Kalmas, 25. Keshchay,
26. Begimdagh-Tegchay, 27. Gyadysu, 28. Sobetabad, 29. W. Agburun, 30. Umbaki,
31. Ajiveli, 32. Ragim, 33. Livanov Bank East., 34. LAM Bank, 35. Zhdanov Bank,
36.  Cheleken, 37. Nebitdagh, 38.  Kotur-Tepe, 39. Barsagelmes, 40. Burun, 41. Kyzylkum,
42.  Kum-Dagh, 43.  Kamyshlja, 44. Sabail, 45. Gozel-Tepekh.
display any AHPP. However, recorded there are significant excess formation
pressure and abnormality factors. They appear to be a result mostly of two
reasons. The first one is unrelaxed syngenetic AHFP that emerged in rather
enclosed reservoir volumes due to their own gravity compression and pen-
etration into them of pore solutions. Simultaneously “regenerated” waters
generated in the transformation process of thick montmorillonite clay series
into hydro-micaceous aggregates penetrated the reservoirs. This transforma-
tion of montmorillonite clays was accompanied by the release of additional
pore water. In other words, additional water emerging in the montmorillon-
ite to hydro-mica conversion increased the pressure in a reservoir.
Search WWH ::




Custom Search