Biology Reference
In-Depth Information
60. Thomas JM, Perrin DM. Probing general acid catalysis in the hammerhead ribozyme.
J Am Chem Soc. 2009;131:1135-1143.
61. Blount KF, Uhlenbeck OC. The structure-function dilemma of the hammerhead ribo-
zyme. Annu Rev Biophys Biomol Struct. 2005;34:415-440.
62. Suzumura K-I, Takagi Y, Orita M, Taira K. NMR-based reappraisal of the coordina-
tion of a metal ion at the pro- Rp oxygen of the A9/G10.1 site in a hammerhead ribo-
zyme. J Am Chem Soc. 2004;126:15504-15511.
63. Wang S, Karbstein K, Peracchi A, Beigelman L, Herschlag D. Identification of
the hammerhead ribozyme metal
ion binding site responsible for rescue of the
deleterious effect of
a cleavage site phosphorothioate. Biochemistry . 1999;38:
14363-14378.
64. Tanaka Y, Kasai Y, Mochizuki S, et al. Nature of the chemical bond formed with the
structural metal ion at the A9/G10.1 motif derived from hammerhead ribozymes. JAm
Chem Soc. 2004;126:744-752.
65. Tanaka Y, Yamaguchi H, Oda S, et al. NMR spectroscopic analyses of functional
nucleic acids-metal interaction and their solution structure analyses. Nucleic Acids
Symp Ser (Oxf) . 2005;49:51-52.
66. Vogt M, Lahiri S, Hoogstraten CG, Britt RD, DeRose VJ. Coordination environment
of a site-bound metal ion in the hammerhead ribozyme determined by 15N and 2H
ESEEM spectroscopy. J Am Chem Soc. 2006;128:16764-16770.
67. Przybilski R, Hammann C. The tolerance to exchanges of the Watson Crick base pair
in the hammerhead ribozyme core is determined by surrounding elements. RNA .
2007;13:1625-1630.
68. Nelson JA, Uhlenbeck OC. Hammerhead redux: does the new structure fit the old
biochemical data? RNA . 2008;14:605-615.
69. Sheldon CC, Symons RH. Mutagenesis analysis of a self-cleaving RNA. Nucleic Acids
Res. 1989;17:5679-5685.
70. Scott WG, Murray JB, Arnold JRP, Stoddard BL, Klug A. Capturing the structure
of a catalytic RNA intermediate:
the hammerhead ribozyme. Science . 1996;
274:2065-2069.
71. Murray JB, Terwey DP, Maloney L, et al. The structural basis of hammerhead ribo-
zyme self-cleavage. Cell . 1998;92:665-673.
72. Murray JB, Sz¨ke H, Sz¨ke A, Scott WG. Capture and visualization of a catalytic RNA
enzyme-product complex using crystal lattice trapping and x-Ray holographic recon-
struction. Mol Cell . 2000;5:279-287.
73. Martick M, Scott WG. Tertiary contacts distant from the active site prime a ribozyme
for catalysis. Cell . 2006;126:309-320.
74. Martick M, Lee T-S, York DM, Scott WG. Solvent structure and hammerhead ribo-
zyme catalysis. Chem Biol. 2008;15:332-342.
75. Lee T-S, Silva-Lopez C, Martick M, Scott WG, York DM. Insight into the role of
Mg 2 þ in hammerhead ribozyme catalysis from x-ray crystallography and molecular
dynamics simulation. J Chem Theory Comput. 2007;3:325-327.
76. Lee T-S, L´pez CS, Giambasu GM, Martick M, Scott WG, York DM. Role of Mg 2 þ
in hammerhead ribozyme catalysis from molecular simulation. J Am Chem Soc.
2008;130:3053-3064.
77. Lee T-S, York DM. Origin of mutational effects at the C3 and G8 positions on ham-
merhead ribozyme catalysis from molecular dynamics simulations. J Am Chem Soc.
2008;130:7168-7169.
78. Lee T-S, Giambasu GM, Moser A, et al. Unraveling the mechanisms of ribozyme
catalysis with multi-scale simulations. In: York DM, Lee T-S, eds. Multiscale Quan-
tum Models for Biocatalysis: Modern Techniques and Applications .NewYork:Springer;
2009.
 
 
 
Search WWH ::




Custom Search