Biology Reference
In-Depth Information
49. Canny MD, Jucker FM, Kellogg E, et al. Fast cleavage kinetics of a natural hammerhead
ribozyme. J Am Chem Soc . 2004;126:10848-10849.
50. Nelson JA, Uhlenbeck OC. Hammerhead redux: does the new structure fit the old bio-
chemical data? RNA . 2008;14:605-615.
51. Nelson JA, Uhlenbeck OC. Minimal and extended hammerheads utilize a similar
dynamic reaction mechanism for catalysis. RNA . 2008;14:43-54.
52. Doudna JA. Hammerhead ribozyme structure: U-turn for RNA structural biology.
Structure . 1995;3:747-750.
53. Ruffner DE, Stormo GD, Uhlenbeck OC. Sequence requirements of the hammerhead
RNA self-cleavage reaction. Biochemistry . 1990;29:10695-10702.
54. Wang S, Karbstein K, Peracchi A, et al. Identification of the hammerhead ribozyme
metal ion binding site responsible for rescue of the deleterious effect of a cleavage site
phosphorothioate. Biochemistry . 1999;38:14363-14378.
55. Murray JB, Sz¨ke H, Sz¨ke A, et al. Capture and visualization of a catalytic RNA
enzyme-product complex using crystal lattice trapping and X-ray holographic recon-
struction. Mol Cell . 2000;5:279-287.
56. Ruffner DE, Uhlenbeck OC. Thiophosphate interference experiments locate phos-
phates important for the hammerhead RNA self-cleavage reaction. Nucleic Acids Res .
1990;18:6025-6029.
57. Uhlenbeck OC. A small catalytic oligoribonucleotide. Nature . 1987;328:596-600.
58. Lilley DM. Ribozymes—a snip too far? Nat Struct Biol . 2003;10:672-673.
59. Canny MD, Jucker FM, Pardi A. Efficient ligation of the Schistosoma Hammerhead ribo-
zyme. Biochemistry . 2007;46:3826-3834.
60. Boots JL, Canny MD, Azimi E, et al. Metal ion specificities for folding and cleavage
activity in the Schistosoma hammerhead ribozyme. RNA . 2008;14:1-11.
61. Thomas JM, Perrin DM. Probing general base catalysis in the hammerhead ribozyme.
J Am Chem Soc . 2008;130:15467-15475.
62. Thomas JM, Perrin DM. Probing general acid catalysis in the hammerhead ribozyme.
J Am Chem Soc . 2009;131:1135-1143.
63. HaoL,Klein J,NeiM.Heterogeneous but conservednatural killer receptor gene complexes
in four major orders of mammals. Proc Natl Acad Sci USA . 2006;103:3192-3197.
64. Carlyle JR, Jamieson AM, Gasser S, et al. Missing self-recognition of Ocil/Clr-b
by inhibitory NKR-P1 natural killer cell
receptors. Proc Natl Acad Sci USA .
2004;101:3527-3532.
65. Wong ES, Sanderson CE, Deakin JE, et al. Identification of natural killer cell receptor
clusters in the platypus genome reveals an expansion of C-type lectin genes. Immunoge-
netics . 2009;61:565-579.
66. Ferbeyre G, Smith JM, Cedergren R. Schistosome satellite DNA encodes active ham-
merhead ribozymes. Mol Cell Biol . 1998;18:3880-3888.
67. Chen X, Denison L, Levy M, et al. Direct selection for ribozyme cleavage activity in
cells. RNA . 2009;15:2035-2045.
68. de la Pe˜a M, Flores R. An extra nucleotide in the consensus catalytic core of a viroid
hammerhead ribozyme: implications for the design of more efficient ribozymes. J Biol
Chem . 2001;276:34586-34593.
69. Saksmerprome V, Roychowdhury-Saha M, Jayasena S, et al. Artificial tertiary motifs sta-
bilize trans-cleaving hammerhead ribozymes under conditions of submillimolar divalent
ions and high temperatures. RNA . 2004;10:1916-1924.
70. Chi YI, Martick M, Lares M, et al. Capturing hammerhead ribozyme structures in action
by modulating general base catalysis. PLoS Biol . 2008;6:e234.
71. Donahue CP, Yadava RS, Nesbitt SM, et al. The kinetic mechanism of the hairpin
ribozyme in vivo: influence of RNA helix stability on intracellular cleavage kinetics.
J Mol Biol . 2000;295:693-707.
 
Search WWH ::




Custom Search