Biology Reference
In-Depth Information
10. Milewski S. Glucosamine-6-phosphate synthase: the multi-facets enzyme. Biochim
Biophys Acta . 2002;1597(2):173-192.
11. Badet-Denisot M-A, Rene L, Badet B. Mechanistic investigations on glucosamine-6-
phosphate synthase. Bull Soc Chim Fr . 1993;130:249-255.
12. Klein DJ, Ferr´-D'Amar´ AR. Structural basis of glmS ribozyme activation by
glucosamine-6-phosphate. Science . 2006;313(5794):1752-1756.
13. Cochrane JC, Lipchock SV, Strobel SA. Structural investigation of the glmS ribozyme
bound to its catalytic cofactor. Chem Biol . 2007;14(1):97-105.
14. Klein DJ, Been MD, Ferr´-D'Amar´ AR. Essential role of an active-site guanine in glmS
ribozyme catalysis. J Am Chem Soc . 2007;129(48):14858-14859.
15. Klein DJ, Wilkinson SR, Been MD, Ferr´-D'Amar´ AR. Requirement of helix P2.2
and nucleotide G1 for positioning the cleavage site and cofactor of the glmS ribozyme.
J Mol Biol . 2007;373(1):178-189.
16. Tinsley RA, Furchak JR, Walter NG. Trans-acting glmS catalytic riboswitch: locked and
loaded. RNA . 2007;13(4):468-477.
17. Cochrane JC, Lipchock SV, Smith KD, Strobel SA. Structural and chemical basis for
glucosamine-6-phosphate binding and activation of the glmS ribozyme. Biochemistry .
2009;48(15):3239-3246.
18. L ¨ nse CE, Schmidt MS, Wittmann V, Mayer G. Carba-sugars activate the glmS -
riboswitch of Staphylococcus aureus . ACS Chem Biol . 2011;6(7):675-678.
19. Lim J, Grove BC, Roth A, Breaker RR. Characteristics of ligand recognition by a glmS
self-cleaving ribozyme. Angew Chem Int Ed Engl . 2006;45(40):6689-6693.
20. Cochrane JC, Strobel SA. Riboswitch effectors as protein enzyme cofactors. RNA .
2008;14(6):993-1002.
21. Watson PY, Fedor MJ. The glmS riboswitch integrates signals from activating and inhib-
itory metabolites in vivo. Nat Struct Mol Biol . 2011;18(3):359-363.
22. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera—a visualization system
for exploratory research and analysis. J Comput Chem . 2004;25(13):1605-1612.
23. Chimera home page: http://www.cgl.ucsf.edu/chimera. Accessed 30.06.2013.
24. Sanner MF, Olson AJ, Spehner JC. Reduced surface: an efficient way to compute
molecular surfaces. Biopolymers . 1996;38(3):305-320.
25. Wilkinson SR, Been MD. A pseudoknot in the 3' non-core region of the glmS ribozyme
enhances self-cleavage activity. RNA . 2005;11(12):1788-1794.
26. Soukup GA. Core requirements for glmS ribozyme self-cleavage reveal a putative pseu-
doknot structure. Nucleic Acids Res . 2006;34(3):968-975.
27. Jansen JA, McCarthy TJ, Soukup GA, Soukup JK. Backbone and nucleobase contacts to
glucosamine-6-phosphate in the glmS ribozyme. Nat Struct Mol Biol . 2006;13(6):517-523.
28. Hampel KJ, Tinsley MM. Evidence for preorganization of the glmS ribozyme ligand
binding pocket. Biochemistry . 2006;45(25):7861-7871.
29. Brooks KM, Hampel KJ. A rate-limiting conformational step in the catalytic pathway of
the glmS ribozyme. Biochemistry . 2009;48(24):5669-5678.
30. Roth A, Nahvi A, Lee M, Jona I, Breaker RR. Characteristics of the glmS ribozyme
suggest only structural roles for divalent metal ions. RNA . 2006;12(4):607-619.
31. Klawuhn K, Jansen JA, Souchek J, Soukup GA, Soukup JK. Analysis of metal ion
dependence in glmS ribozyme self-cleavage and coenzyme binding. Chembiochem .
2010;11(18):2567-2571.
32. Jou R, Cowan JA. Ribonuclease H activation by inert transition-metal complexes.
Mechanistic probes for metallocofactors: insights on the metallobiochemistry of divalent
magnesium ion. J Am Chem Soc . 1991;113(17):6685-6686.
33. Cowan JA. Metallobiochemistry of RNA. Co(NH 3 ) 3 þ as a probe for Mg 2 þ ( aq ) binding
sites. J Inorg Biochem . 1993;49(3):171-175.
Search WWH ::




Custom Search