Biology Reference
In-Depth Information
104. Alarcon JM, Hodgman R, Theis M, Huang YS, Kandel ER, Richter JD. Selective
modulation of some forms of Schaffer collateral-CA1 synaptic plasticity in mice with
a disruption of the CPEB-1 gene. Learn Mem . 2004;11:318-327.
105. Luptak A, Szostak JW. Mammalian self-cleaving ribozymes. In: Lilley DMJ,
Eckstein F, eds. Ribozymes and RNA Catalysis . Cambridge, UK: Royal Society of
Chemistry; 2007.
106. Vogler C, Spalek K, Aerni A, et al. CPEB3 is associated with human episodic memory.
Front Behav Neurosci . 2009;3:4.
107. Epstein LM, Gall JG. Self-cleaving transcripts of satellite DNA from the newt. Cell .
1987;48:535-543.
108. Ferbeyre G, Smith JM, Cedergren R. Schistosome satellite DNA encodes active ham-
merhead ribozymes. Mol Cell Biol . 1998;18:3880-3888.
109. Przybilski R, Graf S, Lescoute A, et al. Functional hammerhead ribozymes naturally
encoded in the genome of Arabidopsis thaliana. Plant Cell . 2005;17:1877-1885.
110. Martick M, Horan LH, Noller HF, Scott WG. A discontinuous hammerhead ribozyme
embedded in a mammalian messenger RNA. Nature . 2008;454:899-902.
111. Ferbeyre G, Bourdeau V, Pageau M, Miramontes P, Cedergren R. Distribution of
hammerhead and hammerhead-like RNA motifs through the GenBank. Genome
Res . 2000;10:1011-1019.
112. Saurin W, Marliere P. Matching relational patterns in nucleic acid sequences. Comput
Appl Biosci . 1987;3:115-120.
113. Shapiro BA. An algorithm for comparing multiple RNA secondary structures. Comput
Appl Biosci . 1988;4:387-393.
114. Margalit H, Shapiro BA, Oppenheim AB, Maizel JV. Detection of common motifs in
RNA secondary structures. Nucleic Acids Res . 1989;17:4829-4845.
115. Gautheret D, Major F, Cedergren R. Pattern searching/alignment with RNA primary
and secondary structures: an effective descriptor for tRNA. Comput Appl Biosci .
1990;6:325-331.
116. Steinberg S, Gautheret D, Cedergren R. Fitting the structurally diverse animal mito-
chondrial
tRNAs(Ser)
to common three-dimensional constraints.
J Mol Biol .
1994;236:982-989.
117. Bourdeau V, Ferbeyre G, Pageau M, Paquin B, Cedergren R. The distribution of
RNA motifs in natural sequences. Nucleic Acids Res . 1999;27:4457-4467.
118. Eddy SR. RNABOB: a program to search for RNA secondary structure motifs in
sequence databases. Unpublished.
119. Riccitelli NJ, LuptĀ“k A. Computational discovery of folded RNA domains in genomes
and in vitro selected libraries. Methods . 2010;52:133-140.
120. Malik HS, Eickbush TH. The RTE class of non-LTR retrotransposons is
widely distributed in animals and is the origin of many SINEs. Mol Biol Evol .
1998;15:1123-1134.
121. Youngman S, van Luenen HGAM, Plasterk RHA. Rte-1, a retrotransposon-like ele-
ment in Caenorhabditis elegans. FEBS Lett . 1996;380:1-7.
122. Jakubczak JL, Burke WD, Eickbush TH. Retrotransposable elements R1 and R2
interrupt the rRNA genes of most insects. Proc Natl Acad Sci USA . 1991;88:3295-3299.
123. Luan DD, Eickbush TH. RNA template requirements for target DNA-primed
reverse
transcription by the R2 retrotransposable
element. Mol Cell Biol .
1995;15:3882-3891.
124. Kurzynska-Kokorniak A, Jamburuthugoda VK, Bibillo A, Eickbush TH. DNA-
directed DNA polymerase and strand displacement activity of the reverse transcriptase
encoded by the R2 retrotransposon. J Mol Biol . 2007;374:322-333.
 
 
Search WWH ::




Custom Search