Biology Reference
In-Depth Information
84. Harris DA, Tinsley RA, Walter NG. Terbium-mediated footprinting probes a catalytic
conformational switch in the antigenomic hepatitis delta virus ribozyme. J Mol Biol .
2004;341:389-403.
85. Sefcikova J, Krasovska MV, Sponer J, Walter NG. The genomic HDV ribozyme uti-
lizes a previously unnoticed U-turn motif to accomplish fast site-specific catalysis.
Nucleic Acids Res . 2007;35:1933-1946.
86. Pereira MJ, Harris DA, Rueda D, Walter NG. Reaction pathway of the trans-acting
hepatitis delta virus ribozyme: a conformational change accompanies catalysis. Biochem-
istry . 2002;41:730-740.
87. Tinsley RA, Harris DA, Walter NG. Magnesium dependence of the amplified confor-
mational switch in the trans-acting hepatitis delta virus ribozyme. Biochemistry .
2004;43:8935-8945.
88. Tinsley RA, Walter NG. Long-range impact of peripheral joining elements on struc-
ture and function of the hepatitis delta virus ribozyme. Biol Chem . 2007;388:705-715.
89. Joyce GF. Amplification, mutation and selection of catalytic RNA. Gene .
1989;82:83-87.
90. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific
ligands. Nature . 1990;346:818-822.
91. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA
ligands to bacteriophage T4 DNA polymerase. Science . 1990;249:505-510.
92. Wilson C, Nix J, Szostak J. Functional requirements for specific ligand recognition by a
biotin-binding RNA pseudoknot. Biochemistry . 1998;37:14410-14419.
93. Pan T, Uhlenbeck OC. In vitro selection of RNAs that catalyze self-cleavage reactions
with Pb2 รพ . FASEB J . 1992;6:A412.
94. Jayasena VK, Gold L. In vitro selection of self-cleaving RNAs with a low pH optimum.
Proc Natl Acad Sci USA . 1997;94:10612-10617.
95. Daubendiek SL, Kool ET. Generation of catalytic RNAs by rolling transcription of
synthetic DNA nanocircles. Nat Biotechnol . 1997;15:273-277.
96. Diegelman AM, Kool ET. Generation of circular RNAs and trans-cleaving catalytic
RNAs by rolling transcription of circular DNA oligonucleotides encoding hairpin
ribozymes. Nucleic Acids Res . 1998;26:3235-3241.
97. Diegelman AM, Daubendiek SL, Kool ET. Generation of RNA ladders by rolling
circle
transcription of
small
circular oligodeoxyribonucleotides. Biotechniques .
1998;25:754-758.
98. Chadalavada DM, Gratton EA, Bevilacqua PC. The human HDV-like CPEB3 ribo-
zyme is intrinsically fast-reacting. Biochemistry . 2010;49:5321-5330.
99. Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism,
regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol
Biol Rev . 1999;63:405-445.
100. Huang YS, Kan MC, Lin CL, Richter JD. CPEB3 and CPEB4 in neurons: analysis of
RNA-binding specificity and translational control of AMPA receptor GluR2 mRNA.
EMBO J . 2006;25:4865-4876.
101. Theis M, Si K, Kandel ER. Two previously undescribed members of the mouse CPEB
family of genes and their inducible expression in the principal cell layers of the hippo-
campus. Proc Natl Acad Sci USA . 2003;100:9602-9607.
102. Ucker DS, Yamamoto KR. Early events in the stimulation of mammary tumor virus
RNA synthesis by glucocorticoids. Novel assays of transcription rates. J Biol Chem .
1984;259:7416-7420.
103. Adelman K, La Porta A, Santangelo TJ, Lis JT, Roberts JW, Wang MD. Single mol-
ecule analysis of RNA polymerase elongation reveals uniform kinetic behavior. Proc
Natl Acad Sci USA . 2002;99:13538-13543.
 
Search WWH ::




Custom Search