Biology Reference
In-Depth Information
84. Araki L, Harusawa S, Yamaguchi M, et al. Synthesis of C4-linked imidazole ribonu-
cleoside phosphoramidite with pivaloyloxymethyl (POM) group. Tetrahedron Lett .
2004;45:2657-2661.
85. Wilson TJ, Ouellet J, Zhao ZY, et al. Nucleobase catalysis in the hairpin ribozyme.
RNA . 2006;12:980-987.
86. Thomas JM, Perrin DM. Active site labeling of G8 in the hairpin ribozyme: implica-
tions for structure and mechanism. J Am Chem Soc . 2006;128:16540-16545.
87. Kuzmin YI, Da Costa CP, Cottrell JW, Fedor MJ. Role of an active site adenine in
hairpin ribozyme catalysis. J Mol Biol . 2005;349:989-1010.
88. Ryder SP, Oyelere AK, Padilla JL, Klostermeier D, Millar DP, Strobel SA. Investi-
gation of adenosine base ionization in the hairpin ribozyme by nucleotide analog
interference mapping. RNA . 2001;7:1454-1463.
89. Wilson TJ, Lilley DMJ. Do the hairpin and VS ribozymes share a common catalytic
mechanism based on general acid-base catalysis ? A critical assessment of available
experimental data. RNA . 2011;17:213-221.
90. Liu L, Cottrell JW, Scott LG, Fedor MJ. Direct measurement of the ionization state of
an essential guanine in the hairpin ribozyme. Nat Chem Biol . 2009;5:351-357.
91. Kath-Schorr S, Wilson TJ, Li N-S, Lu J, Piccirilli JA, Lilley DMJ. General acid-base
catalysis mediated by nucleobases
in the hairpin ribozyme.
J Am Chem Soc .
2012;134:16717-16724.
92. Han J, Burke JM. Model for general acid-base catalysis by the hammerhead ribozyme:
pH-activity relationships of G8 and G12 variants at the putative active site. Biochemistry .
2005;44:7864-7870.
93. Martick M, Horan LH, Noller HF, Scott WG. A discontinuous hammerhead ribozyme
embedded in a mammalian messenger RNA. Nature . 2008;454:899-902.
94. Cochrane JC, Lipchock SV, Smith KD, Strobel SA. Structural and chemical basis for
glucosamine 6-phosphate binding and activation of the glmS ribozyme. Biochemistry .
2009;48:3239-3246.
95. Cochrane JC, Lipchock SV, Strobel SA. Structural investigation of the GlmS ribozyme
bound to its catalytic cofactor. Chem Biol . 2007;14:97-105.
96. Klein DJ, Been MD, Ferr´-D'Amar´ AR. Essential role of an active-site guanine in
glmS ribozyme catalysis. J Am Chem Soc . 2007;129:14858-14859.
97. Martick M, Scott WG. Tertiary contacts distant from the active site prime a ribozyme
for catalysis. Cell . 2006;126:309-320.
98. Klein DJ, Ferr´-D'Amar´ AR. Structural basis of glmS ribozyme activation by
glucosamine-6-phosphate. Science . 2006;313:1752-1756.
99. Chen JH, Yajima R, Chadalavada DM, Chase E, Bevilacqua PC, Golden BL. A 1.9
A crystal structure of the HDV ribozyme precleavage suggests both Lewis acid and
general acid mechanisms contribute to phosphodiester cleavage. Biochemistry .
2010;49:6508-6518.
100. Nakano S, Chadalavada DM, Bevilacqua PC. General acid-base catalysis in the
mechanism of a hepatitis delta virus ribozyme. Science . 2000;287:1493-1497.
101. Ferr´-d'Amar´ AR, Zhou K, Doudna JA. Crystal structure of a hepatitis delta virus
ribozyme. Nature . 1998;395:567-574.
102. Ke A, Zhou K, Ding F, Cate JH, Doudna JA. A conformational switch controls
hepatitis delta virus ribozyme catalysis. Nature . 2004;429:201-205.
103. Adams PL, Stahley MR, Wang J, Strobel SA. Crystal structure of a self-splicing group
I intron with both exons. Nature . 2004;430:45-50.
104. Forconi M, Lee J, Lee JK, Piccirilli JA, Herschlag D. Functional identification of ligands
for a catalytic metal ion in group I introns. Biochemistry . 2008;47:6883-6894.
 
Search WWH ::




Custom Search