Biology Reference
In-Depth Information
41. McLeod AC, Lilley DMJ. Efficient, pH-dependent RNA ligation by the VS ribozyme
in trans Biochemistry . 2004;43:1118-1125.
42. Hiley SL, Collins RA. Rapid formation of a solvent-inaccessible core in the Neurospora
Varkud satellite ribozyme. EMBO J . 2001;20:5461-5469.
43. Sood VD, Yekta S, Collins RA. The contribution of 2'-hydroxyls to the cleavage activ-
ity of the Neurospora VS ribozyme. Nucleic Acids Res . 2002;30:1132-1138.
44. Ryder SP, Strobel SA. Nucleotide
analog interference mapping. Methods .
1999;18:38-50.
45. Jones FD, Strobel SA. Ionization of a critical adenosine residue in the Neurospora
Varkud Satellite ribozyme active site. Biochemistry . 2003;42:4265-4276.
46. Lipfert J, Ouellet J, Norman DG, Doniach S, Lilley DMJ. The complete VS ribozyme
in solution studied by small-angle X-ray scattering. Structure . 2008;16:1357-1367.
47. Michiels PJA, Schouten CHJ, Hilbers CW, Heus HA. Structure of the ribozyme sub-
strate hairpin of Neurospora VS RNA: a close look at the cleavage site. RNA .
2000;6:1821-1832.
48. Flinders J, Dieckmann T. A pH controlled conformational switch in the cleavage site of
the VS ribozyme substrate RNA. J Mol Biol . 2001;308:665-679.
49. Pley HW, Flaherty KM, McKay DB. Three-dimensional structure of a hammerhead
ribozyme. Nature . 1994;372:68-74.
50. Scott WG, Finch JT, Klug A. The crystal structure of an all-RNA hammerhead
ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell . 1995;81:991-1002.
51. Hoffmann B, Mitchell GT, Gendron P, et al. NMR structure of the active conforma-
tion of the Varkud satellite ribozyme cleavage site. Proc Natl Acad Sci USA .
2003;100:7003-7008.
52. Pereira MJ, Nikolova EN, Hiley SL, Jaikaran D, Collins RA, Walter NG. Single VS
ribozyme molecules reveal dynamic and hierarchical folding toward catalysis. J Mol Biol .
2008;382:496-509.
53. Poon AH, Olive JE, McLaren M, Collins RA. Identification of separate structural
features that affect rate and cation concentration dependence of self-cleavage by the
Neurospora VS ribozyme. Biochemistry . 2006;45:13394-13400.
54. Ouellet J, Byrne M, Lilley DMJ. Formation of an active site in trans by interaction of
two complete Varkud Satellite ribozymes. RNA . 2009;15:1822-1826.
55. Sood VD, Collins RA. Identification of the catalytic subdomain of the VS ribozyme
and evidence for remarkable sequence tolerance in the active site loop. J Mol Biol .
2002;320:443-454.
56. Sood VD, Beattie TL, Collins RA. Identification of phosphate groups involved in
metal binding and tertiary interactions in the core of the Neurospora VS ribozyme.
J Mol Biol . 1998;282:741-750.
57. Hiley SL, Sood VD, Fan J, Collins RA. 4-thio-U cross-linking identifies the active site
of the VS ribozyme. EMBO J . 2002;21:4691-4698.
58. Zhao Z, McLeod A, Harusawa S, et al. Nucleobase participation in ribozyme catalysis.
J Am Chem Soc . 2005;127:5026-5027.
59. Tzokov AB, Murray IA, Grasby JA. The role of magnesium ions and 2'-hydroxyl
groups in the VS ribozyme-substrate interaction. J Mol Biol . 2002;324:215-226.
60. Araki L, Morita K, Yamaguchi M, et al. Synthesis of novel C4-linked C 2 -imidazole
ribonucleoside phosphoramidite, its application to probing the catalytic mechanism
of a ribozyme. J Org Chem . 2009;74:2350-2356.
61. Bevilacqua PC. Mechanistic considerations for general acid-base catalysis by RNA:
revisiting the mechanism of the hairpin ribozyme. Biochemistry . 2003;42:2259-2265.
62. Smith MD, Collins RA. Evidence for proton transfer in the rate-limiting step of a
fast-cleaving Varkud satellite ribozyme. Proc Natl Acad Sci USA . 2007;104:5818-5823.
 
Search WWH ::




Custom Search