Chemistry Reference
In-Depth Information
Lefebvre, V., H. North et al. (2006). Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates
that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J . 45 (3):
309-319.
Lefi ngwell, J. (2003). Saffron. Retrieved January 8th, 2006, from http://www.lefi ngwell.com/saffron.htm.
Leuenberger, M. G., C. Engeloch-Jarret et al. (2001). The reaction mechanism of the enzyme-catalyzed central
cleavage of beta-carotene to retinal. Angew. Chem. Int. Ed. Engl . 40 (14): 2614-2617.
Liang C, Z. F., W. Wei, Z. Wen, and S. Qin (2006). Carotenoid biosynthesis in cyanobacteria: Structural and
evolutionary scenarios based on comparative genomics. Int. J. Biol. Sci . 2 (4): 197-207.
Lindqvist, A. and S. Andersson (2002). Biochemical properties of purii ed recombinant human beta-carotene
15,15′-monooxygenase. J. Biol. Chem . 277 (26): 23942-23948.
Lindshield, B. L., K. Canene-Adams et al. (2007). Lycopenoids: Are lycopene metabolites bioactive? Arch.
Biochem. Biophys . 458 (2): 136-140.
Lohse, S., W. Schliemann et al. (2005). Organization and metabolism of plastids and mitochondria in arbuscu-
lar mycorrhizal roots of Medicago truncatula. Plant Physiol . 139 (1): 329-340.
Macias, F. A., A. Torres et al. (2002). Bioactive terpenoids from sunl ower leaves cv. Peredovick (R).
Phytochemistry 61 (6): 687-692.
Maier, W., K. Hammer et al. (1997). Accumulation of sesquiterpenoid cyclohexenone derivatives induced by an
arbuscular mycorrhizal fungus in members of the Poaceae. Planta 202 (1): 36-42.
Maier, W., H. Peipp et al. (1995). Levels of a terpenoid glycoside (Blumenin) and cell wall-bound phenolics in
some cereal mycorrhizas. Plant Physiol . 109 (2): 465-470.
Maier, W., B. Schneider et al. (1998). Biosynthesis of sesquiterpenoid cyclohexenone derivatives in mycor-
rhizal barley roots proceeds via the glyceraldehyde 3-phosphate/pyruvate pathway. Tetrahedron Lett .
39 (7): 521-524.
Marasco, E. and C. Schmidt-Dannert (2003). Towards the biotechnological production of aroma and l avor
compounds in engineered microorganisms. Appl. Biotechnol. Food Sci. Pol . 1 (3): 145-157.
Marasco, E. and C. Schmidt-Dannert (2008). Identii cation of bacterial carotenoid cleavage dioxygenase
homologs that cleave the interphenyl a,b double bond of stilbene derivatives via a monooxygenase reac-
tion. Chembiochem . 9 (9): 1450-1461.
Marasco, E. K., K.-l. Vay et al. (2006). Identii cation of carotenoid cleavage dioxygenases from Nostoc sp. PCC
7120 with different cleavage activities. J. Biol. Chem . 281 (41): 31583-31593.
Mathieu, S., F. Bigey et al. (2007). Production of a recombinant carotenoid cleavage dioxygenase from grape
and enzyme assay in water-miscible organic solvents. Biotechnol. Lett . 29 (5): 837-841.
Mathieu, S., N. Terrier et al. (2005). A carotenoid cleavage dioxygenase from Vitis vinifera L.: Functional char-
acterization and expression during grape berry development in relation to C13-norisoprenoid accumula-
tion. J. Exp. Bot . 56 (420): 2721-2731.
Matusova, R., K. Rani et al. (2005). The strigolactone germination stimulants of the plant-parasitic Striga and
Orobanche spp. are derived from the carotenoid pathway. Plant Physiol . 139 (2): 920-934.
Meinwald, J., K. Erickson, M. Hartshorn, Y. C. Meinwald, and T. Eisner (1968). Defensive mechanisms of
arthropods. XXIII. Anallenic sesquiterpenoid from the grasshopper Romalea microptera. Tetrahedron
Lett . 25 2959-2962.
Naested, H., A. Holm et al. (2004). Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-i nger
protein required for chloroplast and palisade cell development. J. Cell. Sci . 117 (Pt 20): 4807-4818.
Nicoletti, A., D. J. Wong et al. (1995). Molecular characterization of the human gene encoding an abundant 61
kDa protein specii c to the retinal pigment epithelium. Hum. Mol. Genet . 4 (4): 641-649.
Ohmiya, A., S. Kishimoto et al. (2006). Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white
color formation in chrysanthemum petals. Plant Physiol . 142 (3): 1193-1201.
Olson, J. A. and O. Hayaishi (1965). The enzymatic cleavage of beta-carotene into Vitamin A by soluble
enzymes of rat liver and intestine. Proc. Natl. Acad. Sci. U. S. A. 54 (5): 1364-1370.
Olson, J. A. (1961). The conversion of radioactive beta, beta-carotene into Vitamin A by the rat intestine in vivo.
J. Biol. Chem . 236 (2): 349-356.
Paik, J., A. During et al. (2001). Expression and characterization of a murine enzyme able to cleave beta-
carotene-The formation of retinoids. J. Biol. Chem . 276 (34): 32160-32168.
Patel, J. B., J. Mehta et al. (2007). Novel retinoic acid metabolism blocking agents have potent inhibitory activi-
ties on human breast cancer cells and tumour growth. Br. J. Cancer 96 (8): 1204-1215.
Pichersky E. and J. Gershenzon (2002). The formation and function of plant volatiles: Perfumes for pollinator
attraction and defense. Curr. Opin. Plant Biol . 53 : 237-243.
Poliakov, E., S. Gentleman et al. (2005). Key role of conserved histidines in recombinant mouse beta-carotene
15,15′-monooxygenase-1 activity. J. Biol. Chem . 280 (32): 29217-29223.
Search WWH ::




Custom Search