Biomedical Engineering Reference
In-Depth Information
competence of the regenerated tendons (Juncosa-Melvin et al. 2006). The authors of this
study found that values for maximum force, linear stiffness, maximum stress, and linear
modulus for repaired tendons were close to those of natural patellar tendon. In terms of
restoration of key biomechanical parameters, these constructs appear to be the best
engineered tendons obtained so far.
Clinical studies have shown the benefit of early mobilization following tendon repair, and
several postoperative mobilization protocols have been advocated.(Buckwalter JA 1996)
(Chow JA et al 1988) (Elliot D et al. 1994) The precise mechanism by which cells respond to
load remains to be elucidated. However, cells must respond to mechanical and chemical
signals in a coordinated fashion. For example, intercellular communication by means of gap
junctions is necessary to mount mitogenic and matrigenic responses in ex vivo models. (
Sharma P & Maffulli N 2005)
Duration, frequencies and amplitude of loading directly influence cellular response and
behavior in many other tissues. Understanding the physiological window for these
parameters is critical and represents future challenges of research in tendon tissue
engineering.
6. References
Longo, UG.; Lamberti, A.; Maffulli, N. & Denaro, V. (Sep 2010). Tissue engineered biological
augmentation for tendon healing: a systematic review. Br Med Bull.
Wong, JK.; Lui, YH.; Kapacee, Z.; Kadler, KE.; Ferguson, MW. & McGrouther, DA. (2009).
The cellular biology of flexor tendon adhesion formation: an old problem in a new
paradigm. Am J Pathol 175: 1938-1951
Woo, SL.; Wu, C.; Dede, O.; Vercillo, F. & Noorani, S. (Sep 2006) Biomechanics and anterior
cruciate ligament reconstruction.J Orthop Surg Res. 25;1:2
Kim, CW. & Pedowitz, RA. (2003). Principles of Surgery: Graft Choices and the Biology of
Graft Healing in Knee Ligaments: Structure, Function, Injury, and Repair. Ed.
Lippincott Williams & Wilkins ISBN-139780781718172. pp 435-55, Philadelphia
Wang, JH. (2006). Mechanobiology of tendon. J Biomech.; 39:1563-82
Goulet, F.; Rancourt, D.; Cloutier, R.; Germain, L.; Poole, AR. & Auger, FA. (2000). Tendons
and ligaments. Principles of tissue engineering. 2nd ed. pp 711-22 ISBN 13: 978-0-
12-370615-7, San Diego Academic Press Ltd .
Liu, Y.; Ramanath, HS. & Wang, DA. (Apr 2008). Tendon tissue engineering using scaffold
enhancing strategies. Trends Biotechnol. 26:201-9
Musahl, V.; Abramowitch, S.; Gilbert, T.; Tsuda, E.; Wang, J.; Badylak, S. & Woo, SL. (2004).
The use of porcine small intestinal submucosa to enhance the healing of the medial
collateral ligament a functional tissue engineering study in rabbits. J Orthop Res;
22:214-20
Rodeo, SA.; Maher, SA. & Hidaka, C. (2004). What's new in orthopaedic research. J Bone J
Surg Am; 86:2085-95
Altman, GH.; Horan, RL.; Lu, HH.; Moreau, J.; Martin, I.; Richmond, JC. & Kaplan, DL.
(2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials;
23:4131-41.
Chen, J.; Altman, GH.; Karageorgiou, V.; Horan, R.; Collette, A.; Volloch, V.; Colabro, T. &
Kaplan, DL. (2003). Human bone marrow stromal cell and ligament fibroblast
responses on RGD-modified silk fibers. J Biomed Mater Res A; 67:559-70.
Search WWH ::




Custom Search