Biomedical Engineering Reference
In-Depth Information
selective metal deposition. Proceedings of the National Academy of Sciences of the
United States of America , 100, 8: 4527-32, 0027-8424
Sedman, V. L., Adler-Abramovich, L., Allen, S., Gazit, E. and Tendler, S. J. B. (2006). Direct
observation of the release of phenylalanine from diphenylalanine nanotubes.
Journal of the American Chemical Society , 128, 21: 6903-08, 0002-7863
Sedman, V. L., Allen, S., Chen, X. Y., Roberts, C. J. and Tendler, S. J. B. (2009).
Thermomechanical Manipulation of Aromatic Peptide Nanotubes. Langmuir , 25, 13:
7256-59, 0743-7463
Slotta, U. K., Rammensee, S., Gorb, S. and Scheibel, T. (2008). An engineered spider silk
protein forms microspheres. Angewandte Chemie-International Edition , 47, 24: 4592-
94, 1433-7851
Tarek, M., Maigret, B. and Chipot, C. (2003). Molecular dynamics investigation of an
oriented cyclic peptide nanotube in DMPC bilayers. Biophysical Journal , 85, 4: 2287-
98, 0006-3495
Tokunaga, M., Liu, M. L., Nagai, T. , et al. (2010). Implantation of cardiac progenitor cells
using self-assembling peptide improves cardiac function after myocardial
infarction. Journal of Molecular and Cellular Cardiology , 49, 6: 972-83, 0022-2828
Ueda, Y., Ishii, K., Toyama, Y., Nakamura, M. and Okano, H. (2008). Self-assembling peptide
scaffold promotes the axonal growth in the injured spinal cord. Neuroscience
Research , 61: S93-S93, 0168-0102
Viguier, B., Zór, K., Kasotakis, E. , et al. (2011). Development of an Electrochemical Metal-Ion
Biosensor Using Self-Assembled Peptide Nanofibrils. ACS Applied Materials &
Interfaces , 3: 1594-1600, 1944-8244
von Maltzahn, G., Vauthey, S., Santoso, S. and Zhang, S. U. (2003). Positively charged
surfactant-like peptides self-assemble into nanostructures. Langmuir , 19, 10: 4332-
37, 0743-7463
Wiltzius, J. J. W., Landau, M., Nelson, R. , et al. (2009). Molecular mechanisms for protein-
encoded inheritance. Nature Structural & Molecular Biology , 16, 9: 973-U98, 1545-9985
Woolfson, D. N. and Ryadnov, M. G. (2006). Peptide-based fibrous biomaterials: some
things old, new and borrowed. Current Opinion in Chemical Biology , 10, 6: 559-67,
Yan, X. H., Zhu, P. L. and Li, J. B. (2010). Self-assembly and application of diphenylalanine-
based nanostructures. Chemical Society Reviews , 39, 6: 1877-90, 0306-0012
Yang, H., Fung, S. Y., Pritzker, M. and Chen, P. (2009). Ionic-Complementary Peptide Matrix
for Enzyme Immobilization and Biomolecular Sensing. Langmuir , 25, 14: 7773-77,
0743-7463
Yemini, M., Reches, M., Gazit, E. and Rishpon, J. (2005). Peptide nanotube-modified
electrodes for enzyme-biosensor applications. Analytical Chemistry , 77, 16: 5155-59,
0003-2700
Yemini, M., Reches, M., Rishpon, J. and Gazit, E. (2005). Novel electrochemical biosensing
platform using self-assembled peptide nanotubes. Nano Letters , 5, 1: 183-86, 1530-
6984
Zhang, F., Shi, G. S., Ren, L. F., Hu, F. Q., Li, S. L. and Xie, Z. J. (2009). Designer self-
assembling peptide scaffold stimulates pre-osteoblast attachment, spreading and
proliferation. J Mater Sci-Mater Med , 20, 7: 1475-81, 0957-4530
Zhao, Z. and Matsui, H. (2007). Accurate immobilization of antibody-functionalized peptide
nanotubes on protein-patterned Arrays by optimizing their ligand-receptor
interactions. Small , 3, 8: 1390-93, 1613-6810
Search WWH ::




Custom Search