Digital Signal Processing Reference
In-Depth Information
exploring the tradoffs between algorithmic simplifications and implementation
related cost criteria (complexity, energy consumption, etc.). This optimization
depends greatly on the target hardware architecture, which could be based on
dedicated VLSI, processors, or FPGAs.
References
1. IEEE Journal on Selected Areas in Communications, Special issue on the turbo principle:
From theory to practise I, May (2001)
2. IEEE Journal on Selected Areas in Communications, Special issue on the turbo principle:
From theory to practise II, Sep (2001)
3. Akyildiz, I., Lee, W., Vuran, M., Mohanty, S.: Next generation/dynamic spectrum ac-
cess/cognitive radio wireless networks: A survey. Computer Networks Journal, Elsevier 50 ,
2127-2159 (2006)
4. Allen, M., Marttila, J., Valkama, M.: Digital post-processing for reducing A/D converter
nonlinear distortion in wideband radio receivers. In: Signals, Systems and Computers, 2009
Conference Record of the Forty-Third Asilomar Conference on, pp. 1111-1114 (2009)
5. Anderson, J., Mohan, S.: Source and channel coding: An algorithmic approach. IEEE Trans.
Commun. 32 (2), 169-176 (1984)
6. Anttila, L., Handel, P., Valkama, M.: Joint Mitigation of Power Amplifier and I/Q Modulator
Impairments in Broadband Direct-Conversion Transmitters. IEEE Trans. Microwave Theory
and Techniques 58 , 730-739 (2010)
7. Anttila, L., Valkama, M., Renfors, M.: Circularity-based I/Q imbalance compensation in
wideband direct-conversion receivers. IEEE Trans. Veh. Technol. 57 (4), 2099-2113 (2008)
8. Anttila, L., Zou, Y., Valkama, M.: Digital compensation and calibration of I/Q gain and phase
imbalances, chap. 16. Cambridge University Press, Cambridge, UK (2011)
9. Arkesteijn, V., Klumperink, E., Nauta, B.: Jitter requirements of the sampling clock in
software radio receivers. IEEE Trans. Circuits Syst. II 53 (2), 90-94 (2006)
10. Aschbacher, E.: Digital Predistortion of Microwave Power Amplifiers, Ph.D. thesis. Tech-
nishe Universitat Wien (2004)
11. Auer, G.: Bandwidth efficient 3D pilot design for MIMO-OFDM. In: Proc. European Wireless
Conf. Lucca, Italy (2010)
12. Baltar, L., Schaich, F., Renfors, M., Nossek, J.: Computational complexity analysis of
advanced physical layers based on multicarrier modulation.
In: Proc. Future Network &
Mobile Summit, pp. 1-8. Warsaw, Poland (2011)
13. Benedetto, S., Biglieri, E.: Principles of Digital Transmission; With Wireless Applications.
Kluwer Academic Publishers, New York (1999)
14. Benvenuto, N., Tomasin, S.: On the comparison between OFDM and single carrier modulation
with a DFE using a frequency-domain feedforward filter.
IEEE Trans. Commun. 50 (6),
947-955 (2002)
15. Berrou, C., Glavieux, A.: Near optimum error correcting coding and decoding: Turbo codes.
IEEE Trans. Commun. 44 (10), 1261-1271 (1996)
16. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error correcting coding and
decoding: Turbo codes. In: Proc. IEEE Int. Conf. Commun., vol. 2, pp. 1064-1070. Geneva,
Switzerland (1993)
17. Bingham, J.: Multicarrier modulation for data transmission: An idea whose time has come.
IEEE Communications Magazine 28 (5), 5-14 (1990)
18. Boelcskei, H., Gesbert, D., Papadias, C.B., van der Veen, A.J.: Space-Time Wireless Systems:
From Array Processing to MIMO Communications. Cambridge University Press, Cambridge,
UK (2006)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Search WWH ::




Custom Search